
 
 

Polar Case Study 
“A detailed evaluation proved the benefits of the DSM solution: an increase of at least 750% 

in developer productivity, and greatly improved quality in the code and development 

process,” Juha Kärnä from Polar. 

 

 
Polar is the leading brand in the sports instruments and 

heart rate monitoring category delivering state-of-the-

art training technology and solutions. The features in a 

Polar product depend on the product segment and the 

type of sports the product is designed for, such as 

running, cycling, fitness and cross-training, team 

sports or snow sports.  

Software development for these devices is constrained 

by the limited resources they contain, such as the 

amount of memory, processor speed and battery life. 

The actual area of interest — the domain — covered 

by the modeling and code generation is the UI 

applications: how the various capabilities and features 

are made available to the user. The design and 

implementation of the UI applications is heavily 

constrained by device capabilities such as display size, 

type, and user interaction controls. It is worth 

mentioning that as these devices are used in special 

conditions — users may have little time and 

concentration capability while exercising — the 

usability of UI applications is crucial. 

Polar was looking for ways to fundamentally 

improve the productivity of UI application 

development as well as the quality and maintainability 

of the code. Other important requirements were 

usability, easy introduction and becoming independent 

of the target programming languages and 

environments.  

THE SOLUTION 

At Polar, one UI application developer defined the 

modeling language, along with the generators that 

transformed models made with that language into the 

artifacts the company needed (e.g. code, configuration 

files, links to simulators, document generation). The 

modeling language was supported by a tool, 

MetaEdit+, that provided the functionality needed to 

work effectively with models, such as reusing models, 

refactoring and replacing model elements, organizing 

and handling large models, multi-user access - as well 

as usual modeling operations like copy and paste. 



MetaEdit+ is a registered trademark of MetaCase. The other trademarked and registered trademarked names are 

the property of their respective owner companies. 

 

© MetaCase, Printed 2015 

UI application developers can thus use the modeling 

language and tool to create high-level models (see 

screenshot). The modeling language raises the level of 

abstraction from coding, while also providing support 

for reuse when developing multiple products. The 

diagram is also executable, in that full code can be 

automatically generated from it. 

While the screenshot illustrates the use of the 

language, it is about the smallest possible model. In 

real cases there may be dozens of elements in a 

diagram, dozens of diagrams in an application, and 

dozens of applications in a full product. An element in 

one diagram can be linked, referred to and reused in 

other diagrams, or can be linked to a subdiagram 

specifying it in more detail. Applications too can be 

reused between products. 

EVALUATION 

The influence on productivity was inspected in two 

ways: by measuring the development time and by 

collecting developers' opinions with a questionnaire 

after having used both approaches: the current 

development method and the DSM approach used for 

the first time. 

 

 The measurement revealed that the DSM solution 

was found to be at least 7.5 times and on average 

10 times as productive as the current 

development approach. 

 

 In the questionnaire, the DSM solution was 

considered to offer better productivity, quality 

and usability, and be easier to learn. The 

histogram summarizes the questionnaire findings 

by comparing the current approach and DSM 

based on the average grading calculated from 

developers' opinions (scale 1-5, 5 best).  

 

RETURN OF INVESTMENT 

At Polar, creation of the DSM solution took 7.5 

working days, covering the development of the 

modeling language and the code generator. Both of 

these were implemented using MetaEdit+ Workbench. 

MetaEdit+ automatically provides modeling tools 

based on the modeling language, so no extra time 

needed to be spent on tool building. It is worth noting 

that the 7.5 days also included the creation of example 

models specifying UI applications, along with related 

code. This was natural since the best way to test a 

DSM solution under development is to apply it 

immediately on real examples.  

When we compare the time to implement the DSM 

solution to the productivity improvements when 

creating UI applications, it is evident that the 

investment pays back very quickly. With DSM, after 

the 7.5 days' metamodeling, the first whole product 

would take 2.3 days to build, making DSM over twice 

as fast as coding even for the first product. Each 

subsequent product would take another 2.3 days, so in 

the time it took to build one whole product by coding, 

Polar could build several whole products with DSM. 

 

 
 

YOUR NEXT STEP 

 

Visit us at http://www.metacase.com to see how MetaEdit+ can speed up your software development! 

 

Source: Kärnä, J., et al. Evaluating the Use of Domain-Specific Modeling in Practice. OOPSLA Workshop on 

Domain-Specific Modeling, 2009, http://www.dsmforum.org/events/DSM09/Papers/Karna.pdf 

info@metacase.com 

www.metacase.com 


