
www.embedded-world.eu 

 

 

Supporting Joint Development of Systems and 

Software with Domain-Specific Languages

Juha-Pekka Tolvanen 

MetaCase 

Jyväskylä, Finland 

jpt@metacase.com 

Steven Kelly 

MetaCase 

Jyväskylä, Finland 

stevek@metacase.com 

 

 
Abstract—Languages for designing systems tend to be separate 

from languages for designing software. Changes on one side are 

thus harder to see and trace to the other side – and when such 

synchronization is done it is largely a manual effort. Domain-

specific languages can make a difference, as they can enable joint 

development of products in fields that require both systems and 

software engineering expertise. Both teams use the same shared 

language and edit the same specifications – yet can focus on the 

aspects that are relevant to them. We describe this approach with 

examples where system and software aspects have been combined, 

and tracing is enabled or naturally present in the model. From 

these domain-specific models, many different artefacts can be 

automatically produced: software program code, configuration, 

verification, tests, deployment, material needs, instructions for 

installation etc. We conclude by describing the process and 

guidelines for defining domain-specific languages, and evaluating 

the effort needed.  

Keywords—model-based development; domain-specific 

language; system engineering; software engineering 

I.  INTRODUCTION 

Languages for designing systems and languages for 
designing software have traditionally been separate. Changes in 
either part are not easy to see and trace to the other part. When 
the trace and integration between system models and software 
models is done it is largely a manual effort. That effort is often 
made even more error-prone and challenging by different 
versioning systems and formats for storing the specification 
models. Domain-specific languages can make a difference, as 
they can enable joint development of products that require both 
systems engineering and software engineering related work and 
design decisions. Both teams use the same shared language and 
edit the same design models – yet can focus on the aspects 
relevant to them. With appropriate tooling, setting up 
collaboration in the shared models is easier, and designs can be 
managed and versioned together. 

We start by introducing domain-specific languages and 
showing how they differ from general-purpose languages like 
SysML [10] or UML [11]. We show examples from practice in 
which software and system development efforts are brought 
together through domain-specific languages. In these cases, the 
domain-specific languages are defined within the companies 
applying them. The examples cover a variety of industries and 

types of products, such as fish farm automation systems and 
heating systems. In these examples non-software and software 
related aspects are combined and collaboration is based on 
working with the same shared models.  

From the domain-specific models various verification and 
validation efforts can be conducted, and all kinds of artefacts, 
like software code, material needs, tests as well as installation 
and deployment instructions can be generated. In the second part 
of this paper, we outline the process and provide guidelines for 
defining domain-specific languages. Finally, we conclude by 
describing the language creation efforts. 

II. SOLUTION: A SHARED LANGUAGE  

A shared language is one solution for joining systems 
engineering and software engineering efforts. Both teams could 
then collaborate, see each other’s changes, and apply automation 
for model checking and verification. Such continuous and 
trouble-free integration would enable short design and testing 
cycles as well as early analysis and simulation. Tool support 
could also provide continuous integration, tracing among 
models and versioning the whole model together.  

One approach for a shared language could be integrating 
existing general-purpose languages like SysML and UML: they 
even have a shared common foundation. This would not be 
practical though: First, there is no clear integration among these 
languages – even if using their profiling mechanism for 
extensions. The effort to keep work consistent and collaborative 
would be left to humans as these languages do not recognize 
integration. Consider for example the consequences and checks 
with a class diagram of UML when a block is added to a SysML 
model. The inspection of models and the necessary changes 
would be a manual effort left to engineers to decide – and expect 
that they all would do it similarly with the same results. Second, 
integrating existing languages would expect teams to master 
both languages, which are already very large in the case of 
SysML and UML. Third, the possibilities for generating code 
from these models are modest. The parts of UML that could 
generate code simply mirror a subset of the code, leading to 
duplication in that part and yet still requiring the bulk to be 
written by hand. For this reason software engineers today still 
prefer working in a programming language, with management-
mandated UML just as an initial sketch or final documentation. 



The situation improves when the modeling language’s focus 
is narrowed down to a particular type of product and/or to the 
requirements of a single company. Examples of the former are 
AUTOSAR [1][9] and EAST-ADL [3], both in the automotive 
domain. Examples of the latter are more typical and numerous 
— but far less visible, as they are applied inside a single team or 
company. We provide examples of these company-specific 
solutions in Section III.  

Creating domain-specific languages is easier than creating 
general-purpose languages: the language needs to satisfy a 
considerable smaller set of requirements, and typically only 
meet the needs of one company or product development team. 
For example, the language could be specific for certain medical 
products (pacemakers, blood separators etc.), consumer 
products (smart watches, camera etc.), or automotive systems. 
Such domain-specific languages differ considerably from 
general-purpose languages:  

• Domain-specific languages are usually more concise and 
based on already known domain concepts and related 
rules. For example, a language supporting both 
automotive system engineers and safety engineers would 
be based on commonly known concepts originating from 
established practice and standards (e.g., ISO 26262 [4]). 
The modeling concepts would not be abstract blocks or 
classes but more familiar and concrete, e.g. ECU, Sensor, 
Safety Goal, Hazard and ASIL. Such concepts are 
already known, defined and applied to define automotive 
systems that are functionally safe. 

• A domain-specific modeling language guides 
development as it “knows” the rules of the domain: what 
values are possible, mandatory, unique etc. For example, 
following the ISO 26262 example, a safety goal is linked 
to hazardous events and the events again to hazards. In 
languages like SysML or UML, such language concepts 
would not be available, nor could the correctness of their 
links be ensured: their interpretation and checking is left 
to engineers. The tight focus of the domain-specific 
language makes capturing the domain’s information 
easier and more natural. 

• Focusing on the domain raises the level of abstraction: 
ideally the language maps directly to the domain it 
addresses. A visible indicator of this is the notation, 
where the models may closely mimic the “real world” as 
in Fig. 1, 3, and 4 in the next section, where we describe 
examples from practice. 

• Domain-specific models provide better possibilities for 
automation via generators. Even from the same set of 
models the program code, configuration, deployment etc. 
can be produced. Generation can also improve 
understanding, e.g. the reports using the models’ 
functional safety information in [12]. 

• Modeling support can be controlled by the users, as there 
is no traditional vendor lock in which modeling 
capabilities or generators would be fixed by the tool 
vendor. When languages and generators can be freely 
changed, the users are in the driver’s seat. 

Research has shown that the languages which provide the 
best performance and satisfaction seem to be those that are 
narrow and defined inside the companies applying them 
[13][16]. 

III. EXAMPLES FROM PRACTICE 

We next describe two real-world cases where domain-
specific languages joined the tasks of system engineering and 
software engineering. Since these languages are domain-specific 
and made for different needs, the way how the joint development 
is achieved is also somewhat different, giving a broader insight. 

A. Case 1: Fish Farm Automation Systems 

Developing fish farm automation systems requires designing 
and implementing complex functionality with various sensors 
(e.g., water measurement like pH value), actuators (e.g., feeders, 
aerators), ponds and their related functionality, as well as 
developing software-based functionality for storing persistent 
data and providing applications for controlling the automation 
system. Also, the infrastructure for electricity, cabling etc. must 
be planned and specified as well as deployed and maintained. 
All these various parts require joint system and software 
development.  

A company building these systems applied a model-based 
solution based on a domain-specific modeling language. The 
language was created specifically for fish farms, and combines 
all aspects of the automation system. Fig. 1 illustrates this with 
a small model of a fish farm automation installation for a given 
customer. The blue ellipses are ponds for the fishes – located in 
the same way as in the real world. Each pond can be detailed 
with their characteristics along with related sensors, actuators, 
cabling etc. Fig. 2 shows such a specification for an aerator in 
the pond: it defines voltage and oxygen. Here the domain-
specific language offers and guarantees that the values given are 
legal for the aerator. 

The development of both system functionality and software 
is based on same shared model – even literally on the same 
diagrams in this case. All developers can edit different parts of 
the model and the language can support the preferred 
development methodology. It could be that the process goes as 
follows: a sales engineer makes the initial design together with 

 

Fig. 1. Implementation of a fish farm automation system.  
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a customer detailing how many ponds there are, where they will 
be and what are their main features such as feeders or types of 
monitoring. Details like the oxygen type of the aerator and its 
related electricity and cabling needs are then specified later on 
by other team members. 

Since the language follows the rules of the fish farm 
automation systems it also enables checking the specifications 
at modeling time. For example, if the customer requirements 
change and the sales engineer adds further ponds to the model, 
it can be analyzed for completeness and consistency.  

Even more importantly, the code needed for the automation 
system functionality, user interface and database schemas can be 
generated directly from the model, along with the necessary 
network configurations. At the same time other artefacts like 
hardware mappings and simulation for testing can also be 
generated. This company had pushed the automation even 
further as they also generate the documentation and installation 
guides (material lists, wiring plans and even stickers for the 
wiring closet). As a result, there is no need to maintain the 
necessary artefacts separately and spend time keeping those 
artefacts consistent with each other. They are already consistent 
in the single source, the model in which development occurs. 

Also, all model editing is based on the same “live” shared 
specification that is collaboratively specified and versioned 
together. As a result, any changes in a design, like adding an 
aerator to the pond, will lead to specifying the necessary 
mandatory information (as in Fig 2.), checking that the aerator 
has the required cabling, and ensuring controls for it (e.g. 
switching it on/off, monitoring etc.) will be provided in the user 
application.  

B. Case 2: Heating Systems 

Another typical alternative for achieving joint development 
is providing different views or sublanguages for different 
aspects of the final system. Figures 3 and 4 shows two different 
views applied for developing heating systems. Originally these 
views, established as interlinked languages, were created by the 
company to develop solar power systems, but for the sake of 
confidentiality we show them in the context of a heating system.  

Fig. 3 shows the piping and instrumentation of the heating 
system: a model shows the structure of the system using familiar 
visualization of the instruments like sensors, valves, pipe 

insulation etc. The notation follows the industry standards and 
conventions used for specific type of sensors, valves, etc.  

Hardware engineers use this language to specify structural 
parts of the system in terms of the instruments and their piping. 
Based on the instruments defined, the behavior of the system is 
detailed in a state-machine oriented language. From these 
behavioral models the actual software code is produced.  

In the bottom part of Fig. 3 a burner ‘HU1 B1’ with five pipe 
connections is specified. The functionality of the burner is 
detailed in Fig 4. via a state machine. When started, the burner 
is first initialized by turning it off and closing the valve that 
provides the gas. After initialization it moves to waiting for heat 
requests that are triggered either by the need to heat the water or 
the radiator. For heating the burner is started and the gas valve 
is opened. 

It is important to note that these two languages still operate 
on the same domain concepts and can be verified and validated 
together. Fig 4. illustrates this integration as the burner controller 
is expected to open and close the gas valve ‘HU1 CV2’. Yet this 
valve is set in the piping and instruction diagram to be controlled 
manually (Fig 3.). This inconsistency of the designs, between 
physical instruments and required control behavior, is then 
indicated to the engineers at the bottom of the modeling editor 
(see Fig. 4). The resulting check also guides engineers to change 
the model. Similarly, if some behavioral data, like sensor data, 
is expected in the state machine but such a sensor is not defined 
in the piping and instrumentation diagram, a warning would be 
shown to the engineers. This kind of integration is possible 
because the views operate on the same elements and two 
languages are integrated by their definition.  

 

Fig. 3. Piping and instruments of a heating system 

Fig. 4.  

 

Fig. 2.  Details of aerator 



These combined views are also used for producing other 
artefacts needed in addition to the code. For example, code for 
simulators can be generated, enabling testing and verification of 
the system in situations that would be hard or dangerous in real 
life, like high gas pressures or using the system in very hot 
temperatures. Whether generating code for the production 
system or for simulation, the produced code is complete and 
ready to be executed with no need for manual modifications.  

In addition to producing the code, the company applied the 
same domain-specific models as input for other artefacts needed, 
such as producing the sensor interface API, documentation, 
installation guidelines, and calculating the materials needed for 
the given system (e.g. total pipe lengths and types of insulation). 

C. Summary of the examples 

These two examples demonstrate how domain-specific 
modeling languages can be used to better integrate system 
engineering and software engineering tasks. More specifically in 
both examples: 

• Teams can communicate using familiar terminology. 

• Design work can be highly collaborative as both teams 
can see each other’s work. Access controls can be set as 
desired, limiting the teams to read-only access to the 
other team’s specifications, or allowing more freedom, 
e.g. letting engineers focusing on behavior (in Fig. 4.) 
also change the general system structure (in Fig. 3.).  

• The feedback loop is fast and, in many cases, can be 
almost immediate: Changes from others can be seen 
without having to search or update manually – even in 
the same diagram that is being edited. 

• Specification models covering systems and software are 
versioned together. This is a natural consequence of 
having joint language(s). 

• Specifications based on domain-specific concepts can be 
precise enough that code, tests, deployment data and 
material needs can be produced from the models 
automatically – as done in the cases described above. 

IV. CREATING INTEGRATED LANGUAGES 

Language creation requires finding the right level of 
abstraction with relevant language concepts and then 
implementing them to get tooling support.  

A. Identifying language concepts 

Identifying the right level of abstraction is the most 
important phase. Although it can seem as if low-level language 
concepts (e.g., visualizing code with class diagrams) would be 
the easiest tactic, it is better to take concepts from the problem 
domain and thus raise the abstraction level. Describing things in 
problem domain terms instead of implementation concepts also 
enables the use of various generators from the same specification 
models.  

Starting to seek candidate language concepts from the 
system level, like from physical items and structures, leads 
naturally to higher abstraction and to already known domain 
concepts. The pond in Fig 1. and various instruments connected 
via pipes in Fig. 3. are examples of deriving language concepts 
directly from physical system elements. For other sources of 
candidate language concepts see [5]. 

When identifying the language concepts, it is of key 
importance to focus on a narrow application domain, and on the 
actual needs for it rather than trying to make it work for any 
possible future need. It is worth repeating that the domain-
specific language can be changed at any time a requirement 
changes – as opposite to waiting years before a new version of a 
modeling language is released from standardization 
organizations. 

 

Fig. 4. Behavior of heat controller 

 

Fig. 4. Behavior of heat controller (defined in [14]) 
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Other places to find suitable language concepts are the 
terminology used in the domain, the product architecture, and 
reused components and services. In other words, language 
should borrow from the domain-specific jargon or vocabulary 
already used. This vocabulary provides natural concepts that 
describe the systems in ways that people already understand. 
Starting from the existing vocabulary also means that there is no 
need to introduce a new, unfamiliar set of terms. 

A good practice is to start with the mature, well-established 
concepts and then add the others incrementally. Often structural 
parts are easier to start with and then extend cover of the 
language towards behavioral parts. These behavioral parts often 
include elements from state machines, interaction diagrams, or 
flow diagrams, but with domain-specific extensions and links. 
Good tool support helps here by allowing reuse and the quick 
testing of different options. 

B. Implementing the languages within tooling 

While tool support can be obtained by developing the tool 
itself like any other software, a far more practical approach is 
using systems dedicated for the task of producing such tooling: 
Language Workbenches. At best, these tools reduce the total 
effort to a few working days [8][17]. Another important reason 
to use such tooling is that testing language specification early on 
becomes possible. In the longer run, these tools can also cover 
maintenance steps like automating language delivery to the users 
or update existing models when the language changes. 
Typically, the implementation includes the following four steps: 

1) Define abstract syntax 
Almost all modeling languages are specified via 

metamodels. A metamodel defines the grammar that language 
users apply. Depending on the way the language is specified, the 
metamodel covers at least all the concepts, their connections 
along with some constraints on how the language can be applied. 
The constraints can ensure that needed information is given, is 
in the correct form, or changes in one part or view keep others 
consistent. 

A good metamodeling language also assists during language 
definition, helping categorize different kinds of language 
elements, like relationships among modeling objects or ports 
when connecting the objects as well as define sublanguages or 
other kind of integration among different languages. For a 
review of different language definition approaches see [7]. 

2) Set rules and constraints 
Normally a plain metamodel cannot cover all the relevant 

rules and constraints. Also, the metamodel does not cover 
guidance or indicate changes that need to be considered while 
working on the models. Fig. 4. shows an example of one rule at 
the bottom of the editor: the behavior of controller is expected 
to open and close a valve ‘HU1 CV2' but that valve was set to 
be only manually controlled in the system structure (Fig. 3.). 

For this reason, the metamodel-based definition is extended 
with additional rules – typically defined in the formalisms 
applied by the tooling. The origin for the rules normally comes 
from the domain similarly with the rest of the language.  

3) Define concrete syntax 
Each modeling concept, such as objects, their connections, 

or even individual properties, has a visual representation so that 
humans can create, read and validate the models. Moody’s [15] 
work on the Physics of Notation provides a basis for creating 
notations that are easy to read, remember and validate. Consider 
for example the notation in Fig. 3 using symbols for pipes and 
instruments that make the model easier to read.  

Normally the concrete syntax sets one symbol per language 
element, but there can be different representations in different 
sublanguages of the same element [5], or additional information 
on error annotation, warnings, guidance etc. depending on the 
visualization needs [6]. 

4) Define generators 
The final step is defining the generators. This is best done 

last because generators operate on and navigate through the 
models based on language concepts and structures, which must 
thus be ready first. The generators can produce code, tests, 
configuration, deployment instructions, bills of materials, 
documentation etc. as needed. Generators may also be applied 
to produce other models (possibly for other tools) as well as 
transform external data like libraries, code or test results back to 
models. 

Generators are crucial for improved productivity and quality 
as automation removes time-consuming and error-prone manual 
tasks. Once the language has raised the level of abstraction, 
several kinds of artefacts can be produced directly from the same 
model. The relevant data is defined – and checked and 
maintained – only once in the model. Compare this to creating 
and maintaining all the artefacts manually. 

V. CONCLUSIONS 

All too often, system engineering and software engineering 
work is kept separate with limited possibilities for fast feedback 
and integration of the work by the teams. Working in silos 
prevents checking of the whole product and tracing among 
system and software engineering artefacts, and limits the 
collaboration that is critical to any successful development work. 
It also forces versioning of items separately. Everyone working 
in systems and software who has used languages like SysML or 
UML has experienced these limitations. 

Domain-specific languages make a difference: By narrowing 
the language support to the product the company or its team is 
developing, integration of the development work becomes 
possible. In this article we presented examples from practice in 
which joint development of system engineering and software 
engineering was achieved. As in the examples, with suitable 
modeling support the teams can communicate using familiar 
terminology and work in collaboration. The feedback loop is fast 
and, as in the cases described, almost immediate: Changes from 
others can be seen in near real-time – even in the same diagram 
that is currently been edited. Another major benefit is that 
specifications based on domain-specific concepts are precise 
enough so that code, tests, deployment data and material needs 
can be automatically produced from the models.  

Experience from industrial use has shown that with the 
fastest tools it takes on average two weeks to create specific 



modeling support for company specific needs (for various cases, 
see [17]). The process of language implementation is also quite 
well guided and supported by tools, and today the most 
challenging part is identifying the right level of abstractions. 
There are now many examples that language developers can 
look at for inspiration, e.g. [2] shows dozens of public examples. 
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