
www.embedded-world.eu

Supporting Joint Development of Systems and

Software with Domain-Specific Languages

Juha-Pekka Tolvanen

MetaCase

Jyväskylä, Finland

jpt@metacase.com

Steven Kelly

MetaCase

Jyväskylä, Finland

stevek@metacase.com

Abstract—Languages for designing systems tend to be separate

from languages for designing software. Changes on one side are

thus harder to see and trace to the other side – and when such

synchronization is done it is largely a manual effort. Domain-

specific languages can make a difference, as they can enable joint

development of products in fields that require both systems and

software engineering expertise. Both teams use the same shared

language and edit the same specifications – yet can focus on the

aspects that are relevant to them. We describe this approach with

examples where system and software aspects have been combined,

and tracing is enabled or naturally present in the model. From

these domain-specific models, many different artefacts can be

automatically produced: software program code, configuration,

verification, tests, deployment, material needs, instructions for

installation etc. We conclude by describing the process and

guidelines for defining domain-specific languages, and evaluating

the effort needed.

Keywords—model-based development; domain-specific

language; system engineering; software engineering

I. INTRODUCTION

Languages for designing systems and languages for
designing software have traditionally been separate. Changes in
either part are not easy to see and trace to the other part. When
the trace and integration between system models and software
models is done it is largely a manual effort. That effort is often
made even more error-prone and challenging by different
versioning systems and formats for storing the specification
models. Domain-specific languages can make a difference, as
they can enable joint development of products that require both
systems engineering and software engineering related work and
design decisions. Both teams use the same shared language and
edit the same design models – yet can focus on the aspects
relevant to them. With appropriate tooling, setting up
collaboration in the shared models is easier, and designs can be
managed and versioned together.

We start by introducing domain-specific languages and
showing how they differ from general-purpose languages like
SysML [10] or UML [11]. We show examples from practice in
which software and system development efforts are brought
together through domain-specific languages. In these cases, the
domain-specific languages are defined within the companies
applying them. The examples cover a variety of industries and

types of products, such as fish farm automation systems and
heating systems. In these examples non-software and software
related aspects are combined and collaboration is based on
working with the same shared models.

From the domain-specific models various verification and
validation efforts can be conducted, and all kinds of artefacts,
like software code, material needs, tests as well as installation
and deployment instructions can be generated. In the second part
of this paper, we outline the process and provide guidelines for
defining domain-specific languages. Finally, we conclude by
describing the language creation efforts.

II. SOLUTION: A SHARED LANGUAGE

A shared language is one solution for joining systems
engineering and software engineering efforts. Both teams could
then collaborate, see each other’s changes, and apply automation
for model checking and verification. Such continuous and
trouble-free integration would enable short design and testing
cycles as well as early analysis and simulation. Tool support
could also provide continuous integration, tracing among
models and versioning the whole model together.

One approach for a shared language could be integrating
existing general-purpose languages like SysML and UML: they
even have a shared common foundation. This would not be
practical though: First, there is no clear integration among these
languages – even if using their profiling mechanism for
extensions. The effort to keep work consistent and collaborative
would be left to humans as these languages do not recognize
integration. Consider for example the consequences and checks
with a class diagram of UML when a block is added to a SysML
model. The inspection of models and the necessary changes
would be a manual effort left to engineers to decide – and expect
that they all would do it similarly with the same results. Second,
integrating existing languages would expect teams to master
both languages, which are already very large in the case of
SysML and UML. Third, the possibilities for generating code
from these models are modest. The parts of UML that could
generate code simply mirror a subset of the code, leading to
duplication in that part and yet still requiring the bulk to be
written by hand. For this reason software engineers today still
prefer working in a programming language, with management-
mandated UML just as an initial sketch or final documentation.

The situation improves when the modeling language’s focus
is narrowed down to a particular type of product and/or to the
requirements of a single company. Examples of the former are
AUTOSAR [1][9] and EAST-ADL [3], both in the automotive
domain. Examples of the latter are more typical and numerous
— but far less visible, as they are applied inside a single team or
company. We provide examples of these company-specific
solutions in Section III.

Creating domain-specific languages is easier than creating
general-purpose languages: the language needs to satisfy a
considerable smaller set of requirements, and typically only
meet the needs of one company or product development team.
For example, the language could be specific for certain medical
products (pacemakers, blood separators etc.), consumer
products (smart watches, camera etc.), or automotive systems.
Such domain-specific languages differ considerably from
general-purpose languages:

• Domain-specific languages are usually more concise and
based on already known domain concepts and related
rules. For example, a language supporting both
automotive system engineers and safety engineers would
be based on commonly known concepts originating from
established practice and standards (e.g., ISO 26262 [4]).
The modeling concepts would not be abstract blocks or
classes but more familiar and concrete, e.g. ECU, Sensor,
Safety Goal, Hazard and ASIL. Such concepts are
already known, defined and applied to define automotive
systems that are functionally safe.

• A domain-specific modeling language guides
development as it “knows” the rules of the domain: what
values are possible, mandatory, unique etc. For example,
following the ISO 26262 example, a safety goal is linked
to hazardous events and the events again to hazards. In
languages like SysML or UML, such language concepts
would not be available, nor could the correctness of their
links be ensured: their interpretation and checking is left
to engineers. The tight focus of the domain-specific
language makes capturing the domain’s information
easier and more natural.

• Focusing on the domain raises the level of abstraction:
ideally the language maps directly to the domain it
addresses. A visible indicator of this is the notation,
where the models may closely mimic the “real world” as
in Fig. 1, 3, and 4 in the next section, where we describe
examples from practice.

• Domain-specific models provide better possibilities for
automation via generators. Even from the same set of
models the program code, configuration, deployment etc.
can be produced. Generation can also improve
understanding, e.g. the reports using the models’
functional safety information in [12].

• Modeling support can be controlled by the users, as there
is no traditional vendor lock in which modeling
capabilities or generators would be fixed by the tool
vendor. When languages and generators can be freely
changed, the users are in the driver’s seat.

Research has shown that the languages which provide the
best performance and satisfaction seem to be those that are
narrow and defined inside the companies applying them
[13][16].

III. EXAMPLES FROM PRACTICE

We next describe two real-world cases where domain-
specific languages joined the tasks of system engineering and
software engineering. Since these languages are domain-specific
and made for different needs, the way how the joint development
is achieved is also somewhat different, giving a broader insight.

A. Case 1: Fish Farm Automation Systems

Developing fish farm automation systems requires designing
and implementing complex functionality with various sensors
(e.g., water measurement like pH value), actuators (e.g., feeders,
aerators), ponds and their related functionality, as well as
developing software-based functionality for storing persistent
data and providing applications for controlling the automation
system. Also, the infrastructure for electricity, cabling etc. must
be planned and specified as well as deployed and maintained.
All these various parts require joint system and software
development.

A company building these systems applied a model-based
solution based on a domain-specific modeling language. The
language was created specifically for fish farms, and combines
all aspects of the automation system. Fig. 1 illustrates this with
a small model of a fish farm automation installation for a given
customer. The blue ellipses are ponds for the fishes – located in
the same way as in the real world. Each pond can be detailed
with their characteristics along with related sensors, actuators,
cabling etc. Fig. 2 shows such a specification for an aerator in
the pond: it defines voltage and oxygen. Here the domain-
specific language offers and guarantees that the values given are
legal for the aerator.

The development of both system functionality and software
is based on same shared model – even literally on the same
diagrams in this case. All developers can edit different parts of
the model and the language can support the preferred
development methodology. It could be that the process goes as
follows: a sales engineer makes the initial design together with

Fig. 1. Implementation of a fish farm automation system.

www.embedded-world.eu

a customer detailing how many ponds there are, where they will
be and what are their main features such as feeders or types of
monitoring. Details like the oxygen type of the aerator and its
related electricity and cabling needs are then specified later on
by other team members.

Since the language follows the rules of the fish farm
automation systems it also enables checking the specifications
at modeling time. For example, if the customer requirements
change and the sales engineer adds further ponds to the model,
it can be analyzed for completeness and consistency.

Even more importantly, the code needed for the automation
system functionality, user interface and database schemas can be
generated directly from the model, along with the necessary
network configurations. At the same time other artefacts like
hardware mappings and simulation for testing can also be
generated. This company had pushed the automation even
further as they also generate the documentation and installation
guides (material lists, wiring plans and even stickers for the
wiring closet). As a result, there is no need to maintain the
necessary artefacts separately and spend time keeping those
artefacts consistent with each other. They are already consistent
in the single source, the model in which development occurs.

Also, all model editing is based on the same “live” shared
specification that is collaboratively specified and versioned
together. As a result, any changes in a design, like adding an
aerator to the pond, will lead to specifying the necessary
mandatory information (as in Fig 2.), checking that the aerator
has the required cabling, and ensuring controls for it (e.g.
switching it on/off, monitoring etc.) will be provided in the user
application.

B. Case 2: Heating Systems

Another typical alternative for achieving joint development
is providing different views or sublanguages for different
aspects of the final system. Figures 3 and 4 shows two different
views applied for developing heating systems. Originally these
views, established as interlinked languages, were created by the
company to develop solar power systems, but for the sake of
confidentiality we show them in the context of a heating system.

Fig. 3 shows the piping and instrumentation of the heating
system: a model shows the structure of the system using familiar
visualization of the instruments like sensors, valves, pipe

insulation etc. The notation follows the industry standards and
conventions used for specific type of sensors, valves, etc.

Hardware engineers use this language to specify structural
parts of the system in terms of the instruments and their piping.
Based on the instruments defined, the behavior of the system is
detailed in a state-machine oriented language. From these
behavioral models the actual software code is produced.

In the bottom part of Fig. 3 a burner ‘HU1 B1’ with five pipe
connections is specified. The functionality of the burner is
detailed in Fig 4. via a state machine. When started, the burner
is first initialized by turning it off and closing the valve that
provides the gas. After initialization it moves to waiting for heat
requests that are triggered either by the need to heat the water or
the radiator. For heating the burner is started and the gas valve
is opened.

It is important to note that these two languages still operate
on the same domain concepts and can be verified and validated
together. Fig 4. illustrates this integration as the burner controller
is expected to open and close the gas valve ‘HU1 CV2’. Yet this
valve is set in the piping and instruction diagram to be controlled
manually (Fig 3.). This inconsistency of the designs, between
physical instruments and required control behavior, is then
indicated to the engineers at the bottom of the modeling editor
(see Fig. 4). The resulting check also guides engineers to change
the model. Similarly, if some behavioral data, like sensor data,
is expected in the state machine but such a sensor is not defined
in the piping and instrumentation diagram, a warning would be
shown to the engineers. This kind of integration is possible
because the views operate on the same elements and two
languages are integrated by their definition.

Fig. 3. Piping and instruments of a heating system

Fig. 4.

Fig. 2. Details of aerator

These combined views are also used for producing other
artefacts needed in addition to the code. For example, code for
simulators can be generated, enabling testing and verification of
the system in situations that would be hard or dangerous in real
life, like high gas pressures or using the system in very hot
temperatures. Whether generating code for the production
system or for simulation, the produced code is complete and
ready to be executed with no need for manual modifications.

In addition to producing the code, the company applied the
same domain-specific models as input for other artefacts needed,
such as producing the sensor interface API, documentation,
installation guidelines, and calculating the materials needed for
the given system (e.g. total pipe lengths and types of insulation).

C. Summary of the examples

These two examples demonstrate how domain-specific
modeling languages can be used to better integrate system
engineering and software engineering tasks. More specifically in
both examples:

• Teams can communicate using familiar terminology.

• Design work can be highly collaborative as both teams
can see each other’s work. Access controls can be set as
desired, limiting the teams to read-only access to the
other team’s specifications, or allowing more freedom,
e.g. letting engineers focusing on behavior (in Fig. 4.)
also change the general system structure (in Fig. 3.).

• The feedback loop is fast and, in many cases, can be
almost immediate: Changes from others can be seen
without having to search or update manually – even in
the same diagram that is being edited.

• Specification models covering systems and software are
versioned together. This is a natural consequence of
having joint language(s).

• Specifications based on domain-specific concepts can be
precise enough that code, tests, deployment data and
material needs can be produced from the models
automatically – as done in the cases described above.

IV. CREATING INTEGRATED LANGUAGES

Language creation requires finding the right level of
abstraction with relevant language concepts and then
implementing them to get tooling support.

A. Identifying language concepts

Identifying the right level of abstraction is the most
important phase. Although it can seem as if low-level language
concepts (e.g., visualizing code with class diagrams) would be
the easiest tactic, it is better to take concepts from the problem
domain and thus raise the abstraction level. Describing things in
problem domain terms instead of implementation concepts also
enables the use of various generators from the same specification
models.

Starting to seek candidate language concepts from the
system level, like from physical items and structures, leads
naturally to higher abstraction and to already known domain
concepts. The pond in Fig 1. and various instruments connected
via pipes in Fig. 3. are examples of deriving language concepts
directly from physical system elements. For other sources of
candidate language concepts see [5].

When identifying the language concepts, it is of key
importance to focus on a narrow application domain, and on the
actual needs for it rather than trying to make it work for any
possible future need. It is worth repeating that the domain-
specific language can be changed at any time a requirement
changes – as opposite to waiting years before a new version of a
modeling language is released from standardization
organizations.

Fig. 4. Behavior of heat controller

Fig. 4. Behavior of heat controller (defined in [14])

www.embedded-world.eu

Other places to find suitable language concepts are the
terminology used in the domain, the product architecture, and
reused components and services. In other words, language
should borrow from the domain-specific jargon or vocabulary
already used. This vocabulary provides natural concepts that
describe the systems in ways that people already understand.
Starting from the existing vocabulary also means that there is no
need to introduce a new, unfamiliar set of terms.

A good practice is to start with the mature, well-established
concepts and then add the others incrementally. Often structural
parts are easier to start with and then extend cover of the
language towards behavioral parts. These behavioral parts often
include elements from state machines, interaction diagrams, or
flow diagrams, but with domain-specific extensions and links.
Good tool support helps here by allowing reuse and the quick
testing of different options.

B. Implementing the languages within tooling

While tool support can be obtained by developing the tool
itself like any other software, a far more practical approach is
using systems dedicated for the task of producing such tooling:
Language Workbenches. At best, these tools reduce the total
effort to a few working days [8][17]. Another important reason
to use such tooling is that testing language specification early on
becomes possible. In the longer run, these tools can also cover
maintenance steps like automating language delivery to the users
or update existing models when the language changes.
Typically, the implementation includes the following four steps:

1) Define abstract syntax
Almost all modeling languages are specified via

metamodels. A metamodel defines the grammar that language
users apply. Depending on the way the language is specified, the
metamodel covers at least all the concepts, their connections
along with some constraints on how the language can be applied.
The constraints can ensure that needed information is given, is
in the correct form, or changes in one part or view keep others
consistent.

A good metamodeling language also assists during language
definition, helping categorize different kinds of language
elements, like relationships among modeling objects or ports
when connecting the objects as well as define sublanguages or
other kind of integration among different languages. For a
review of different language definition approaches see [7].

2) Set rules and constraints
Normally a plain metamodel cannot cover all the relevant

rules and constraints. Also, the metamodel does not cover
guidance or indicate changes that need to be considered while
working on the models. Fig. 4. shows an example of one rule at
the bottom of the editor: the behavior of controller is expected
to open and close a valve ‘HU1 CV2' but that valve was set to
be only manually controlled in the system structure (Fig. 3.).

For this reason, the metamodel-based definition is extended
with additional rules – typically defined in the formalisms
applied by the tooling. The origin for the rules normally comes
from the domain similarly with the rest of the language.

3) Define concrete syntax
Each modeling concept, such as objects, their connections,

or even individual properties, has a visual representation so that
humans can create, read and validate the models. Moody’s [15]
work on the Physics of Notation provides a basis for creating
notations that are easy to read, remember and validate. Consider
for example the notation in Fig. 3 using symbols for pipes and
instruments that make the model easier to read.

Normally the concrete syntax sets one symbol per language
element, but there can be different representations in different
sublanguages of the same element [5], or additional information
on error annotation, warnings, guidance etc. depending on the
visualization needs [6].

4) Define generators
The final step is defining the generators. This is best done

last because generators operate on and navigate through the
models based on language concepts and structures, which must
thus be ready first. The generators can produce code, tests,
configuration, deployment instructions, bills of materials,
documentation etc. as needed. Generators may also be applied
to produce other models (possibly for other tools) as well as
transform external data like libraries, code or test results back to
models.

Generators are crucial for improved productivity and quality
as automation removes time-consuming and error-prone manual
tasks. Once the language has raised the level of abstraction,
several kinds of artefacts can be produced directly from the same
model. The relevant data is defined – and checked and
maintained – only once in the model. Compare this to creating
and maintaining all the artefacts manually.

V. CONCLUSIONS

All too often, system engineering and software engineering
work is kept separate with limited possibilities for fast feedback
and integration of the work by the teams. Working in silos
prevents checking of the whole product and tracing among
system and software engineering artefacts, and limits the
collaboration that is critical to any successful development work.
It also forces versioning of items separately. Everyone working
in systems and software who has used languages like SysML or
UML has experienced these limitations.

Domain-specific languages make a difference: By narrowing
the language support to the product the company or its team is
developing, integration of the development work becomes
possible. In this article we presented examples from practice in
which joint development of system engineering and software
engineering was achieved. As in the examples, with suitable
modeling support the teams can communicate using familiar
terminology and work in collaboration. The feedback loop is fast
and, as in the cases described, almost immediate: Changes from
others can be seen in near real-time – even in the same diagram
that is currently been edited. Another major benefit is that
specifications based on domain-specific concepts are precise
enough so that code, tests, deployment data and material needs
can be automatically produced from the models.

Experience from industrial use has shown that with the
fastest tools it takes on average two weeks to create specific

modeling support for company specific needs (for various cases,
see [17]). The process of language implementation is also quite
well guided and supported by tools, and today the most
challenging part is identifying the right level of abstractions.
There are now many examples that language developers can
look at for inspiration, e.g. [2] shows dozens of public examples.

REFERENCES

[1] AUTOSAR, https://www.autosar.org/ [Accessed 4 Jan 2022]

[2] DSM Forum, http://www.dsmforum.org/ [Accessed 4 Jan 2022]

[3] H. Blom, D. Chen, K. Kaijser, H. Lönn, Y. Papadopoulos, M. Reiser, R.T.
Kolagari, S. Tucci, “EAST-ADL: An Architecture Description Language
for Automotive Software-intensive Systems in the Light of Recent use
and Research”. In: International Journal of System Dynamics
Applications, 2016

[4] ISO Functional Safety, 26262-1, 2018

[5] S. Kelly, J-P. Tolvanen, Domain-Specific Modeling: Enabling full code
genration, Wiley, 2008

[6] Kelly, S., Tolvanen, J.-P., Automated Annotations in Domain-Specific
Models: Analysis of 23 Cases. FPVM 2021: 1st International Workshop
on Foundations and Practice of Visual Modeling, 2021

[7] H. Kern, A. Hummel, S. Kühne. Towards a comparative analysis of meta-
metamodels. In Proceedings of the compilation of the co-located
workshops on DSM'11, TMC'11, AGERE! 2011, AOOPES'11, NEAT'11,
& VMIL'11 (SPLASH '11 Workshops). Association for Computing
Machinery, New York, NY, USA, 2011

[8] A. El Kouhen, C. Dumoulin, S. Gérard and P. Boulet. Evaluation of
Modelling Tools Adaptation. CNRS HAL hal-00706701, 2012.
http://tinyurl.com/gerard12

[9] A. Nyßen, P, Könemann,. Model-based Automotive Software
Development using Autosar, UML, and Domain-Specific Languages,
Embedded World Conference, 2013.

[10] Omg.org, System Modeling Language, version 1.6. [online] Available at:
https://www.omg.org/spec/SysML/, 2019 [Accessed 4 Jan 2022]

[11] Omg.org, Unified Modeling Language, version 2.5.1. [online] Available
at: https://www.omg.org/spec/UML/, 2017 [Accessed 4 Jan 2022]

[12] B. Sari, Fail-Operational Safety Architecture for ADAS/AD Systems and
a Model-driven Approach for Dependent Failure Analysis. Springer,
2020.

[13] J., Whittle, J. Hutchinson, M. Rouncefield, The State of Practice in
Model-Driven Engineering, IEEE Software, vol.31, no.3, 2014.

[14] MetaCase, MetaEdit+ User’s Guide. [Online]. Available at:
https://metacase.com/support/55/manuals/, 2018 [Accessed 4 Jan 2022].

[15] D. Moody, “The Physics of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering,” in IEEE
Transactions on Software Engineering, vol. 35, no. 6, 2009.

[16] J.-P. Tolvanen, S. Kelly, “Model-Driven Development Challenges and
Solutions Experiences with Domain-Specific Modelling in Industry”. In:
Proceedings of the 4th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD 2016),
ScitePress, 2016

[17] J.-P. Tolvanen, S. Kelly, “Effort Used to Create Domain-Specific
Modeling Languages”. In: Proceedings of the 21st ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems. ACM, 2018.

