
Applying Domain-Specific Languages in Evolving Product Lines
Juha-Pekka Tolvanen

MetaCase
Jyväskylä, Finland
jpt@metacase.com

Steven Kelly
MetaCase

Jyväskylä, Finland
stevek@metacase.com

ABSTRACT
This demonstration shows how domain-specific languages for mod-
eling and generating variant products can evolve together with
the product line. In the demonstration, examples from practice are
illustrated and executed, covering both domain engineering and
application engineering. The examples cover the typical evolution
scenarios: adding new features and variability points to a product
line and then to existing products, changing their variation, and
removing them completely from the product line. The evolution
of the domain-specific languages, and the versioning of both the
languages and products built with the languages, are demonstrated.

CCS CONCEPTS
• Software and its engineering→ Software product lines;Do-
main specific languages; Software configuration management and
version control systems; Model-driven software engineering.

KEYWORDS
Software Product Line, product derivation and generation, Domain-
Specific Language, Domain-Specific Modeling, MetaEdit+
ACM Reference Format:
Juha-Pekka Tolvanen and Steven Kelly. 2019. Applying Domain-Specific
Languages in Evolving Product Lines. In 23rd International Systems and
Software Product Line Conference - Volume B (SPLC ’19), September 9–13,
2019, Paris, France. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3307630.3342389

1 INTRODUCTION
Product lines are constantly evolving: new features and their vari-
ability points will emerge and existing ones change or even become
obsolete. At the same time, products that have already been de-
livered need to be maintained and updated with new features —
including features not known when these products were originally
delivered. Domain-Specific Languages (DSLs) can be used to cover
the rich variation space within product lines [1]. With a DSL, the
language definition itself defines the variation space and related
rules. Language users then automatically follow the variation space
when creating variant products. Domain engineers define the lan-
guage and application engineers use it. In a fair number of cases the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6668-7/19/09. . . $15.00
https://doi.org/10.1145/3307630.3342389

final products can be automatically generated from the high-level
variant specifications [1, 5].

DSLs, and in particular related tools, have not always recognized
the need for evolution nor provided tool support for it. In such
cases, once a DSL has changed there has been a huge and often
manual effort to update all the existing specifications to the new
language version1. This unfortunate situation is the norm with
textual DSLs and their syntax-oriented editors, but also found in
many graphical modeling tools, including recently created ones
(e.g. Eclipse-based [4]). In this demonstration we will show how
a modern, mature tool, the MetaEdit+ language workbench, rec-
ognizes the importance of evolution and provides tool support for
managing it. This demonstration focuses on features of MetaEdit+
5.5 SR1.

2 METAEDIT+ FOR EVOLVING PRODUCT
LINES

With MetaEdit+ Workbench [3], domain engineers define DSLs and
get modeling tools for a specific product line in a fraction of the time
needed by other tools [2]. First, experts define a domain-specific
language as a metamodel containing the domain concepts and rules,
and then specify the mapping from that to code by defining genera-
tors. DSLs can be collaboratively developed and maintained as well
as versioned — using the functionality available in MetaEdit+. Lan-
guage creation in an industrial setting takes on average 10 working
days [7].

MetaEdit+ Modeler follows the defined modeling language and
automatically provides full modeling tool functionality: editors,
browsers, generators, collaborative model editing etc. Application
engineers create variants by editing designs and by executing gen-
erators producing the product variants: their source code, config-
uration, deployment, tests, documentation etc. This leads to 5–10
times faster product derivation and time-to-market compared to
traditional manual practices [6].

The use of DSLs, however, does not end once the first language
version is created. Instead, DSLs need to be refined, enhanced and
maintained along with the other assets of the product line. In par-
ticular, not only does the DSL (language and generators) evolve,
but also changes to the language need to be reflected — ideally
automatically and unobtrusively to language users — to the models
specifying product variants. MetaEdit+ provides functionality to
manage such evolution with its automatically collected history of
models and all changes made to them. Both evolving DSLs and the
variant specifications that have been created can be versioned to
existing version control systems (e.g. Git or SVN). In the demon-
stration these tool features are shown in detail, following evolution
scenarios from practice.

1One public example of this is the evolution of AUTOSAR metamodel.

https://doi.org/10.1145/3307630.3342389
https://doi.org/10.1145/3307630.3342389
https://doi.org/10.1145/3307630.3342389

SPLC ’19, September 9–13, 2019, Paris, France Juha-Pekka Tolvanen and Steven Kelly

3 CASES OF PRODUCT LINE EVOLUTION
In the demonstration we show the language definition and language
usage scenario within different product lines, including Internet of
Things applications, industrial automation systems and consumer
products. The evolution of the language is addressed based on two
dimensions:

(1) Nature of change: adding, changing or removing parts from
the product line and thus from the DSL

(2) Whether the change influences only to the language defi-
nition, to the generator used for product derivation or to
both.

Each case starts with presenting the results of domain engineer-
ing: DSL and generators. This is followed by showing DSL use in
application engineering and generating product variants. Next, we
present a scenario of product line evolution that calls for changes in
the DSL. These changes are then discussed and implemented during
the demonstration: changing the language elements, constraints,
concrete syntax or generators.

Based on these language changes, a new version of the DSL is
delivered to the language users, i.e. application engineers. With
MetaEdit+ they can view the model history, inspect the changes
made and version the product variants to version control systems

like GitHub, Bitbucket etc. The same versioning approach is also
available for domain engineers (for DSLs and related generators).
The demonstration ends by showing the generated application code,
its execution, or other artifacts relevant for the product variants
developed.

REFERENCES
[1] Czarnecki, K., Eisenecker, U., Generative Programming, Methods, Tools, and Ap-

plications, Addison-Wesley, 2000.
[2] El Kouhen, A., Dumoulin, C., Gerard, S., Boulet, P., Evaluation of Modeling Tools

Adaptation, 2012, https://hal.archives-ouvertes.fr/hal-00706701v2
[3] MetaCase, MetaEdit+ 5.5 User’s Guides, 2017,

https://www.metacase.com/support/55/manuals/
[4] Rocco Di, J., Ruscio Di, D., Narayanankutty, H., Pierantonio, A., Resilience

in Sirius Editors: Understanding the Impact of Meta-Model Changes, Models
and Evolution Workshop at Models Conference, 2018 (http://www.models-and-
evolution.com/2018/papers/8.pdf)

[5] Tolvanen, J.-P., Kelly, S., Defining Domain-Specific Modeling Languages to Auto-
mate Product Derivation: Collected Experiences. Proceedings of the 9th Interna-
tional Software Product Line Conference, Springer-Verlag, 2005.

[6] Tolvanen, J-P. and Kelly, S. Model-Driven Development Challenges and Solutions
- Experiences with Domain-Specific Modelling in Industry. In Proceedings of
the 4th International Conference on Model-Driven Engineering and Software
Development, SCITEPRESS Science and Technology Publications, Lda, 2016

[7] Tolvanen, J.-P., Kelly, S., Effort Used to Create Domain-Specific Modeling Lan-
guages. In ACM/IEEE 21th International Conference on Model Driven Engineering
Languages and Systems (MODELS 18), ACM, New York, NY, USA, 2018

	Abstract
	1 Introduction
	2 MetaEdit+ for evolving product lines
	3 Cases of product line evolution
	References

