CASE tool support for co-operative
work in information systems design

Steven Kelly

Dept. of Computer Science and Information Systems,
University of Jyvaskyla, PL 35, FM0351 Jyvaskyldinland
Tel: +358 14 603036, Fax: 603011, Email: kelly@cs.jyu.fi

Abstract

The neal for asynchronous co-operative work in designis shown by many surveys
of CASE todl use and reseach on cesign. MetaEdit+ is a metaCASE environment
that alows multiple simultaneous modellers to work together on designing
information systems and also information systems design methods. We describe
the automatic locking strategies that enable MetaEdit+ to dffer a high level of
concurrency whilst guaranteeng consistency, enabling effedive m-operative
work. In particular we describe anew colledion data structure that alows high
concurrency of updates even at small sizes, fulfilli ng the need in CASE for largest
growth of design information at the start of a projed. Finaly, we evaluate
MetaEdit+'s collaboration suppat and performance & teanware, comparing it
with several CASE tools.

Keywords
Co-operative work, multi-user CASE, teamware

1 INTRODUCTION

MetaCA SE has long keen suggested as the answer to many o the aurrent problems
of CASE todls, in particular their inflexibility. Whilst a normal CASE tod
suppats only a singe fixed method for designing information systems, a
metaCASE todl can be @nfigured by the user to suppat different methods. This
allows organisations to suppat those methods they already have in use, and
modify them as necessry to addresstheir changing reals: vital in today’s world
where techndogy and methods change so quickly. Recently commercia and
acalemic metaCASE tools have started to appea, with a few tools srious enough

to take into induwstrial use. However, nore of these tools suppat metaCASE in a
multi-user environment, and most are single user even for CASE work. This is
particularly odd as metaCASE is redly only useful in a multi-user environment:
developing and wsing a aistom methodis not normally cost effedive for a single
user.

Even standard CASE todls have been ow to move from single to multi-user
suppat. Empiricd reseach has siown the aurrent ladk of multi-user suppat in
CASE todls is a serious problem (Sto93 Rup95. In perticular, Selamat et al.
(Sel94) foundthat lack of multi-user suppat was the single largest CASE-spedfic
reason why CASE tools were nat being adopted in Malaysia. In addition to these
guestionnaire-based surveys of organisations, an empiricd laboratory examination
by Vesey & Sravanapud (Ves95) found that suppat for co-operative working
was poor in current CASE tools.

Ancther commonly identified source of discontent with CASE todls is the ladk
of integration between methods within a tool (Sto93 Rup95. This can dften be
explained by the fad that many todls use asimple file-based system for storage,
rather than a true repository: ead model is dored in its own file, and there is no
linking between files, thus nor between models of different methods.

MetaEdit+ is a multi-user repaository-based metaCASE environment which was
produwced by the MetaPHOR reseach projed, and haes been commercialised and
available & a full product since November 1996 Other papers have examined its
metaCASE fedures (Kel96) and innovative CASE fedures (Kel97); in this paper
we concentrate on its multi-user functionality.

In the next sedion, we will examine related research and the requirements for
multi-user CASE, then gve a brief overview of MetakEdit+ and its ArtBASE
database. Following that we will describe and evaluate the m-operative suppat
MetaEdit+ off ers throughits automatic locking strategies and nowel data structures.
The successof these solutions in making MetakEdit+ a multi-user metaCASE toadl is
then evaluated hriefly acwording to the aiteria of Vessy and Sravanapud
(Ves95. Finally we conclude and examine some directions for future research.

2 BACKGROUND
2.1 Related research

To ou knowledge there has been norecent empirica reseach on hav designers
use CASE tods co-operatively in pradice athough among dhers Kraut and
Streder (Kra95) examine designers communicaion in a wider organisational
setting.

There ae alarge number of single or simple multi-user CASE todls. However,
attempts to make more sophisticated CASE tods and metaCASE tools multi-user
sean to founckr: in particular many of the few manufadurers who have annourced

such multi-user metaCASE tods have later withdrawn them (Paradigm+,
Excderator/Customizer, ASTI Graphicad Designer / MethodBuilder). Similarly, it
appeasto be eay to make asimple single user metaCA SE research prototype: no
end d examples can be found but these ae dmost never developed into full
functionality multi-user metaCASE environments.

Apart from MetaPHOR, two ather significant research projeds have worked on
extending CASE and metaCASE techndogy with paossbilities for computer-
suppated collaborative work (CSCW), and produced something more than a
prototype.

Lincoln (previoudly IPSYS) Tood Builder (initially described in (Ald91)) has a
multi-user repaository solution for CASE with the paosshility to configure the
methods suppated. Methods are configured by wsing three different proprietary
textual languages. Whilst this can be mnsidered as metaCASE, the time taken to
spedfy anew methodis an order of magnitude larger than in MetaEdit+, and made
more difficult by the separation o the metaCASE and CASE comporents into
different tools, making testing and correding a lengthy process of exporting,
compiling, and linking the new metamodel to the CASE tod ead time. This
involves all users exiting, upgrading their CASE todl, restarting it andloggngin to
the repository again.

The secondreseach projed, at Nokia corporation, has produced TDE (Tai97),
a CSCW design environment that includes sme CASE functionality and the
posshility of changing the methods suppated. It alows nea instantaneous
updktes of design cata between multiple users using a spedal natification server
they have developed, which runs in addition to the underlying ObjedStore
database: the normal transadion protocol in ObjedStore is far too slow to use for
such fast updates of models between users. Whilst the CSCW implementation is
strong the CASE functionality is limited to that of flow-charter type tods. any
kind d relationship can be drawn between any kinds of objeds, and there is no
code generation. Methods can be changed from outside TDE using a textual
language, but thisincludes only the basic ERA concepts and thus represents at best
significantly limited metaCASE functionality. Whilst TDE is undoultedly useful
within a single arporation with a single method, and represents an important
move avay from the many CSCW drawing todls towards s/nchronows CSCW
CASE, that move cannot be said to have been completed yet.

In addition to these, and interesting to us because of their similar development
environment, a simple fixed-method workflow CASE tod was developed in
Smalltalk in (Be94). Their initial implementation used an RDBMS, but this was
found to be very difficult to work with, requiring dugicaion d many data
structures: one version for adual use and ancther relationalised version for the
database, leading to large amounts of code just for these and maintaining
consistency between them. They foundthe move to a product similar to ArtBASE
very easy, and it solved the problems stated and provided many benefits.

2.2 Requirementsfor multi-user (meta-)CASE

Vessy and Sravanapud (Ves95) provide an extensive set of references and
motivation on the requirements for multi-user CASE. They divide the nealed
functiondlity into taskware (basic CASE functiondity, no communicaion
necessary), teamware (CASE information sharing, accesscontrol and monitoring),
and goupware (non-CASE communicétion, time and meding management). They
exclude taskware from their investigation o collaboration suppat in existing
CASE todls, the @sence of communicaion daces it outside their field of interest.
We greewith their opinion that most groupware functionality ‘could be provided
by generalized, task-independent padckages (e.g. eledronic mail, bulletin baards,
cdendaring capabiliti es)’: MetaEdit+ thus does not dugicate such functiondlity.
Thus the most prominent neeals are for teamware, in particular the aility to share
information, with concurrency control ‘to resolve nflict and suppat tightly
couded group adivities'. They perceive groups as working most freguently in
asynchronows mode, but also sometimes needing to access $ared resources at the
same time.

Newman-Wolfe & a. (New92), writing abou the Ensemble cncurrent
graphics editor, sum up the desired behaviour for collaboration in editing thus:
“sharing shoud be & transparent as possble to the user, yet detail s of that sharing
shoud be available if desired”. This is the guiding idea we have followed in
implementing the @ncurrency behaviour of MetaEdit+. Chen et al. (Che93)
include @ the first requirement for a software engineeing database that there
shoud be mnsistency within atransadion: “Data changes due to a transadion are
not visible until the transaction has successfully comnfitted

An important point to consider for a CASE repasitory is the behaviour that
designers are used to: a prime rule of human computer interadion is to avoid
unexpeded behaviour. Designers are often programmers too, and programming
collaboration tools in general have an atomic transadion concept, e.g. SCCS and
Envy. Thus the same aomicity shoud be observed in a CASE repository. The
workaday world is suggested as a paradigm for CSCW design (Mor90): in other
words, the work pradices in use before amputerisation shoud be thaose foll owed
(with improvements) in the computerised suppat. Before multi-user CASE tods
— and in many cases even after their introduction — designers worked on their
designs largely aone, and the end product of ead mini-cycle of design and
improvement was released to colleggues. Thus the interface that ead designer
worked with was a paper version d another colleague’s work, which became out
of data over a period d days to weeks, before being replaced by an updited
version. This suggests that there is little need for synchronows updates, but a
constant need to view the most up-to-date released version d someone dse's
design, even if they are aurrently changing that design. This view is endarsed by
Marmolin et al. (Mar91) who conclude that in design work the need is espedally
for asynchronows co-working: synchronows co-working daes not seem to be

important. Newman-Wolfe' s requirement for avail ability of details would motivate
the low-key display of information that that design is being updted, and
availability of more information, e.g. who is updating it.

2.3 MetaEdit+

MetaEdit+ is a full metaCASE environment that suppats both CASE and
metaCASE for multiple users within the same eavironment. It suppats and
integrates multiple methods and includes multiple eliting tools for diagrams,
matrices and tables. It was developed in the MetaPHOR projed, which had ealier
developed the single user MetakEdit metaCASE tod (Smo91). Figure 1 shows the
architedure of MetaEdit+, which is client-server with the server containing a
central MetaEngine and various tools.

Instance of Startup/Main |E&=g] I Environment
MetaEdit+ Launcher #====11| Management
Diagram fég 1
Editor -
Matrix Model
Editor Editing
Table
Editor
Repository D[ﬂq]
Browsers =
Query Model
Editor Retrieval
network
MetaEngine Report
/ Editor i
Hyper- I
/ \ text Tool Model Linking
— | | & Annotation
Debate D_ﬁﬁ‘:'
R) Browser
epository a
Objectetc. | = I
—
\ Tools === Method
Symbol Management
~N
Editor -I_n

\\ MetaEngine

Figurel Architecture of MetaEdit+.

The information heat of the MetaEdit+ environment is the Objed Repository. The
repository is implemented as a database running at a ceitral server: clients
communicae only through shared data and state & the server. All information in
MetaEdit+ is dored in the Objed Repaository, including methods, diagrams,
matrices, objeds, properties, and even font seledions. Hence, modificaion o
system designs (or methods) in ore MetaEdit+ client is automaticdly refleded to
other clients on commit, guaranteeéng consistent and upto date information. The
Objed Repository itself is designed to be mostly invisible to users. The use of the
repository is visible only when a user starts or exits MetaEdit+, opens or closes
projects, and commits or abandons transactions.

|ObjectTypeC| | PropertyTypeCl

ObjectTypeBl PropertyTypeBl

ObjectTypeA PropertyTypeAl
4

Types
|RepositoryH Project2}

= contains

I:l = persistent object
Graph4 %

= instance of

Figure2 Structure of the repository (abridged).

A repasitory is compased of projeds, ead of which contains a set of graphs that
describe aparticular system, and pcssbly some metamodels. Figure 2 shows a
partia view of the structure of atypicad example repository. Projed1 contains only
types, which are implemented as Smalltalk classes: several graph types, eat of
which uses sveral objed, relationship and role types, ead of which uses ®vera
property types. Projed2 contains only instances of types, i.e. graphs that contain
objeds that have properties. These ae instances of types defined in Projedl: for
instance, Graphlis an instance of GraphTypeA. Projed3 contains both types and
instances, with an example shown of Graph4 hkeing an instantiation o
GraphTypeD. Omitted from the figure for the sake of clarity are representations:
ead graph instance may have severa representations, for instance & a graphica
diagram or as a matrix, of its conceptual contents. Similarly, objeds, relationships
and roles have representations which are stored within the gpropriate graph
representation. Opening a projed reals all the graphs in that projed, so they are

visible to users, e.g. in browsers. However, nat al objeds, properties etc. are read:

these ae only rea as they are nealed, e.g. when they are being dsplayed in a

graph which the user opens. Objeds are catied when read, and thus are only real

once per sesson ower the network: performance dter that initial read isidenticd to

non-persistent objects, and the object is only read again if another user changes it.
On a lower level, ead projed exists as an area in the repository. Eac

persistent objed is adually persistent in ore particular area MetaEdit+ stores in

eadt areaone persistent ‘projed’ objed, which simply ads as aroat by panting to

al graphsin that area from the graphs one can follow onto real al other parts of

model data in that area. Projects thus directly contain only graphs.

24 ArtBASE

ArtBASE isalibrary of classes which add persistenceto Smalltalk objeds, plus a
separate Smalltalk server program (Art93). The server is the same for all ArtBASE
applications. ArtBASE has been tested in various applications in bah industria
and pubic sedor settings, with hundeds of simultaneous users accessng the same
repository. The work required by the dient applicaion programmer is snal, as
there is no separate database sublanguage. The only cdls necessary are to make an
objed persistent; to increase performance it is aso nama to mark objeds as
needing to be saved when they have been changed. Thisis a much smaller amount
of work than is generally needed even for an OODBMS, and represents a tiny
fradion d the mde nealed for interfadng with a relational database: see eg.
(Bec9).

ArtBASE automaticdly implements optimistic concurrency: transadions are
only allowed to commit if they do nd conflict with reads and writes of other
overlapping transadions that have dready committed. Thus the repository is
guaranteed consistent automaticdly. To avoid users having to abandontheir work
in transadions, ArtBASE also alows pessmistic concurrency: objeds can be rea,
write or exclusive locked before they are operated on, thus preventing operations
that would later cause a transaction to be unable to commit.

ArtBASE transadions are fully ACID, athoughsome of the mnstraints can be
relaxed, for example by turning df chedking o real-write conflicts. ArtBASE
suppats the highest degree (3) of consistency, as defined in Gray et a. (Gra76):
reads are repeaable within a transadion, i.e. the value read will not change;
changes are only visible to aher users when committed; al writes from a
transadion are committed together; and wers canna overwrite data dhanged bu
not yet committed by another user.

A similar approac to that used in ArtBASE was taken by Riegel et a. (Rie88)
in the Alltalk system. There the Smalltalk objed engine was changed to cdculate
from atransitive dosure from the database which new objeds neeled to be stored
in the database, and to recogrise from assgnments when an oljed had been
changed and reeded to be upceted in the database. However, Alltalk was not

commercialy avail able, and the aticle states that there was no suppat for locks or
other mechanism for controlling sharing of data.

There have been ather commercial products smilar to ArtBASE, but nore
avalable in 1993 (when MetaEdit+ development began) treded classes and
metadasses as first class objeds and allowed free linking between any oljeds.
OODBMSs such as GemStone required maintenance of the schemato be spedfied
in bah Smalltalk and their own proprietary schema language: we would thus have
been forced to keep two separate descriptions of the schema and maintain their
consistency ead time aty change was made to metamodels. Chen et a (Che93)
evaluated GemStone for software engineeing, finding that its concurrency suppat
was poa: if one user made a diange and committed, no aher user could commit
any change. To seethe other user’s changes, users had to first log ou and log badk
in again (this has snce been improved). Ancther possbility, Distributed Smalltalk
(Ben90) was ruled ou because the implementation dd na alow classchanges to
be propagated to ather users, rendering classbased metamodelling impossble.
More recent versions of these ewvironments may have overcome some of these
drawbacks.

3 LOCKS IN ARTBASE AND METAEDIT+

In MetaEdit+ we have based ou concurrency suppat on automatic locking
strategies rather than user-handed versioning a configuration management. This
relieves designers of the agnitive load of handing concurrency themselves (e.g.
by always making explicit versions), freéng them to concentrate on design, whil st
at the same time guaranteeing the consistency of the repository.

In this sdion we will look a how locks are used innowetively within
MetaEdit+ to provide ahigh level of concurrency whilst maintaining consistency.
First we will [ook at the basic concepts of locks in ArtBASE and their general use
in MetaEdit+, and then at the spedfic goplication o these cwncepts to dfferent
kinds of data in MetaEdit+.

3.1 Concepts

There ae three basic concepts which we will use in ou explanations: sesson,
transadion, and lock. We will first describe these, and aso classfy the diff erent
kinds of data in MetaEdit+ from the point of view of locking.

Sessions

In MetaEdit+ a sesgon is defined as the time from when a user logs in to the
repository to when helogsout. Asarough gude, a sessonwould namally last for
awork day or some part of a day, and is generaly the same & the time for which

the user is running MetaEdit+. Each sesson is composed of one or more
transactions.

Transactions

In MetaEdit+, a transadion is an atomic unit of work: urntil a transadion is
committed, other users cannat cannd see ay of the work dore during that
transadion. Users end a transadion either explicitly by comnitting it or implicitly
by loggng ou. Transadions also provide a measure of undo functiondity by
allowing toabandona transaction.

At the start of ead sesson, when a user logs in to the repaository, a transadion
is darted for that user. The repasitory will remember its date & that instant, and
throughou the transadion the repository will provide information as it was at the
instant the transaction was darted. Similarly, nore of the changes the user makes
to the information in the repasitory will be visible to ather users until the user ends
his transadion by comnitting it. At that point all his changes will be written to the
repository, and will then be available to ather users, but only read by them when
they next start a transadion (remember that their current transadions will still be
using the information available from the time they were started).

Locks

We have tried to base our user-visible multi-user behaviour on the everyday world
(Mor90). In the everyday world, a person locks omething if he wants to prevent
others from manipulating it or removing it. A lock will prevent changes — your
bike whed disappeaing, or your house being damaged — but in general will not
prevent others dng something (they can look at your bike, or pee in through
your windows). The situation is in many ways smilar in MetaEdit+, but here the
main aim isto prevent two people making changes to the same information, rather
than diredly destructive ads. Thus if ancther user has locked something, you can
still look at it, but you cannot change it.

In addition to its automatic optimistic concurrency control, which would na
alow sufficient concurrency for CASE (cf. Be94), ArtBASE suppats read, write
and exclusive locks. These locks can be obtained in ore of two duration modes:
transadion and sesson. A transadion lock is automaticdly relessed (the
information is unlocked) at the end o the arrent transadion, releasing it for other
users. A sesson lock persists over into ead new transadion, until the information
is unlocked by some other adion. For instance, graphs are sesson locked while
they are open in an editor, and the sesson lock is only relessed when the user
closes the editor.

When a user attempts to change apieceof information in MetaEdit+, that piece
of information will first be write locked, and orly if that lock was siccessul will
the dhange be dlowed. A lock is succesSul if nobodyelse has held alock on that
piece of information in a transaction which overlaps with his.

No informationis ever read locked. Because no atomic operation in MetaEdit+
reads one data value and writes other data on the basis of that value, this is
perfedly safe & regards low-level consistency. On a higher, semantic, levd, it is
of course possble for a user to make a dange based oninformation he can read
but which is currently being changed. We do nd regard this as a problem, but
rather a common part of the design process users are drealy used to basing their
own work onthe last released versions of others' work. We believe the benefits of
being able to view al data & al times sgnificantly ouweigh the problems,
following the reseach results of (Mar91, New92, Ves95). MetakEdit+ makes
visible to the user if information is being changed by another user, thus alowing
them to procea, contad the user for detail s of the dhanges, or commit to read the
changed version.

Types of data
For our purposes, we can divide data in MetaEdit+ into four kinds:

e conceptual objects, relationships, roles and properties

e conceptual graphs, and representational graphs and their elements
e projects, i.e. collections of related graphs

¢ metamodels.

A representational graph is a diagram, matrix or table. A conceptual graph is the
‘red’ datathat underlies that representational graph: a mnceptual graph may have
several different representations. Information stored by a representational graph
and its elements includes the positions of individual symbadls, the order of items on
an axis in a matrix, or the widths of the mlumns in a table. Correspondngly a
conceptua graph stores information about which oljeds belongto the graph, how
they are onneded together via relationships, and what other graphs they explode
to. Graphsin MetaEdit+ are organised into projeds, which consist of aname and a
set of graphs. Information may be fredy linked and reused between different
projects, but each graph belongs primarily to only one project.

3.2 Automatic locking strategies

MetaEdit+ automates all the functionadity conreded with suppating multiple
users: it is perfedly possble to use it withou knowing anything d the underlying
principles. This is made posshle by a set of automatic locking strategies. by
inferring from user behaviour which operations he is abou to perform on which
data, we can lock that data in advance, thus guarantedng that he will be ale to
perform the operations, or, if the lock fails, he can seethat he can orly view the
data, and can also see who holds the lock.

Thus locking is performed automaticdly by MetakEdit+ on kehalf of the user,
based on the user's adions. In contrast, starting and ending sessons and

transadions are adions that are eplicitly caried ou by the user. Why this
distinction? Virtualy every adion in MetaEdit+ requires sosme kind d locking
operation a chedk, and the burden onthe user of manualy setting and releasing
the locks would be huge. In addition, the safety of the work dore in a transadion
depends on the wrred locks being oldained at the crred times: any mistake, and
the transadion will probably be unable to commit because of conflicting changes
with another user. Transadion commit on the other hand is a question d dividing
work up into semanticaly coherent units, the general size of which depends on
many situational fadors. Similarly, if a transadion were automaticaly committed,
the user would then lose the possbility of aborting and thus unddng the adions of
that transadion. Thus only the user himself can dedde with any acaracy when to
commit.

In MetaEdit+, locks are used dfferently depending onthe kind d information
and the arrent circumstances. Here we explain the types of locks and the diff erent
locking strategies in use in MetaEdit+. These different types of lock and locking
strategies are designed to refled the normal pattern of CASE usage, to gve the
most efficient and invisible support.

As we have seen, ArtBASE arealy provides the locking primitives. On top o
these we have developed a LockingSystem (Luo96 which interfaces with the
MetaEngine and provides the following functionality:

e It automates the request of various frequently met colledions of locks, so that
either all locks are obtained, or none (if some lock is not available)

¢ It provides handling, reporting and logging of failed locks

e It modifies cading d lock information to improve the default ArtBASE
behaviour.

Much locking in MetaEdit+ is handled by the MetaEngine through the
LockingSystem withou tod implementers needing to worry abou it. Tools and
editors in MetaEdit+ are resporsible for locks gedfic to their representation data,
and call the utility functions of the LockingSystem for these.

We shall now look at how the automatic locking works with resped to different
kinds of data. We shall proceal in order of increasing size, examining locking for
objeds, relationships, roles and their properties, then for graphs, then for projeds,
where we introduce a new multi-user persistent colledion. Finaly we shall
examine the special locking solutions required for metamodels.

Objects etc.

Individual objeds, relationships, and roles, and their individual properties are
locked orly when the user explicitly opens them in a property dialog. When a user
opens a dialog on an oljed’s properties, MetakEdit+ attempts to lock all that
objed’s properties, so they can be changed. If one or more of the locks fail, then
no locks are taken, and the user can orly view the propertiesin the property dialog:
the OK button will be greyed. If all |ocks were obtained, the user will be ale to

press the OK button to accet his changes. The reason bkehind locking all
properties and nd just those that are changed is two-fold. Firstly, we want to take
the locks when the property dialog is opened, before the user starts to make
changes, so he can see straight away whether his changes would be acceted.
Seowondy, the information in the various properties is normally semanticdly
interlinked, even though there ae no links in the adua data: the range of
semanticdly corred values in ore property of an oljed depend onthe values of
the other properties. If only changed properties were locked, two users could make
changes to noninterseding subsets of the properties with no lock corflicts, but
resulting in a semantically inconsistent state of the objects’ properties.

Graphs

When opening an editor on a representational graph, MetaEdit+ will automaticaly
try to oltain locks both for the representational graph, and for the underlying
conceptual graph. The success of these locks determines which adions the user
may perform in that editor: if one or both locks fail, the elitor will still open, but
some of the menu items will be greyed, and aher e.g. mouse operations may have
no effed. The conceptual objeds etc. and representational elements within the
graph are nat locked: the cnceptual objeds are thus dill freeto be alited by aher
users who accessthem via an editor withou locks on this graph, or via ay ather
graph a placethey are reused. In contrast, representational elements are not
reused, and thus canna be readed and edited ather than via an editor on this
representational graph. The ditor only allows modifications to representational
elements if the lock onthe representational graphis held, thus the representational
elements are dfedively ‘locked’, but withou the overhead of explicitly locking
each one of them.

For instance, if adiagram is opened and locked succesgully, but the conceptual
graphisnot able to be locked, the user will be &le to move symbals aroundin the
diagram, but not be ale to add new objeds or relationships to the graph. He will
however be @le to add a symbal for an oljed that already exists in the conceptual
graph, or show a relationship that already exists there. If neither lock were
obtained, the user's adions will be restricted to scrolling, zooming, viewing
seleded types, and editing the properties of the objeds etc. in the graph. Lock
information in editors is visible through the menu bar, and the user may view
further information about who holds any locks which he was not granted.

If a user knows he is opening a graph for viewing orly, he can spedfy this
while he opens it, and he will then na be granted any locks and will be unable to
modify it. He can of course reverse this dedsion later and open it again namally,
thus attempting to gain the locks.

Projects
One of the most difficult aspeds of implementing locking in MetaEdit+ was
projeds. Each projed stores a mlledion d all the graphs it contains: many users

may simultaneoudly (i.e. in overlapping transadions) want to add a new graph, and
therefore need to write lock and modify the wlledion itself. The traditional
solution to such problems of shared colledions has been to use a B-tree (or
similar), and an implementation o B-trees aready existed in ArtBASE. However,
the B-tree structure only becomes efficient once the number of leaves becomes
large, yet at the start of a projed, when new graphs are being added at the gredest
spedd, the olledionisinitially empty. The largest natural number of graphs for a
projed is well below 100, thus a B-tree gproach, where atypicd node sizeis 50,
would be inefficient in terms of storage space ad performance Similarly, the
performance of a general-purpose B-treeis at its worst if keys are inserted in an
ascending ader: splits occur often and 50% of the storage space ae wasted.
Logicd OIDs, however, form the only possble key for graphs in general, and
these ae dlocaed in ArtBASE in an ascending ader, as is general in oljed-
oriented databases.

More serioudy, index structures like B-trees have proved to be a serious
battlenedk of the system if they are updated by multiple users smultaneously.
Several techniques to improve cncurrency and recovery have been proposed and
tested (Sri93). Nevertheless the implementation o these dgorithmsis difficult and
frequent modifications dill reduce the performance of the system significantly. In
particular, concurrency appeas to be & its worst when the lledion is snall,
whereas our need for concurrency is highest then, as many users creae many
graphs in a new project.

As projeds are nat expeded to grow to contain much more than 100 gaphs,
and we have no redd for fast key access— and indeed no wseful source of keys —
we do nd benefit from the positive sides of B-trees, and are serioudly affeded by
their negative sides. To solve this problem | designed a new kind d multi-user
colledion. It may be interesting to nae that Bed and Hartley (Bec94) aso found
the neal to extend the ArtBASE-like library of classes they used in their fixed-
method CASE todl with new persistent colledion classes. Their additions were
however ssimply automatic marking d the wlledion as changed when elements
were alded or removed; my MultiUserColl includes this but its main pupose was
to address a somewhat more complicated problem.

The basis of the MultiUserColl colledion is a persistent array containing N
elements, where eab element is itself a persistent objed, cdled an Insulator. An
Insulator is a ssimple objed, which hdds one other objed, or halds nil if it is
currently unused. Insulators are persistent in their own right, and can thus be
locked independently of eadr ather and o the parent MultiUserColl. The
MultiUserColl aso has a ‘chain’ variable which is initialy nil, but can hdd
ancther MultiUserCaoll, thus forming a chain of MultiUserColls to suppat more
than N membersin the wlledion. Initially a new MultiUserColl contains an empty
Insulator in each place.

MUC

1 insulator] JGraph A]
2 \'_|1|nsukator|* @ |:| = persistent object
3 Ainsuiaor] AGrapn] — = aggregation
4 N (e @) I(| iad ce variable)
5 rsuraio] i * T o
chain

1 >'|Insulatorl >'|Graph |:|

2 \'_'1|nsu|ator| @

3 \'_'1|nsu|ator| @

4 Ninsutator] (nil)

5 \'_'1msu|ator| nil

chain

Figure3 A MultiUserColl after several operations.

The figure shows a MultiUserColl as e in ore dient after severa transadions
have added graphs (Graphs A to F, which caused a second MultiUserColl to be
chained on to the first) and also removed some graphs (as ®en by the enpty
Insulators at dots 2 and 5 where Graphs B and E were). The Insulator at slot 2 is
locked bu empty, becaise another user has added a graph (say Graph G) there in
an owerlapping transadion: this client canna seethat graph urtil after commit, but
can see that the slot is locked, and thus cannot be used.

Iterative and colledion operations on the MultiUserColl are redefined so that
they operate only on the held values of nonempty Insulators, and so that they
invisibly follow on to any chained MultiUserColls. Thus the standard colledion
APl of the MultiUserColl behaves identicdly to cather colledions, hiding the
implementation details from applicaion pogrammers. When adding oljeds, the
MultiUserColl scans through its Insulators to find the first empty Insulator for
which an attempted lock is successul. It then places the alded oljed into that
Insulator. If there ae no empty lockable Insulators in the chained Multi UserColl s,
it attempts to lock the last MultiUserColl to chain a new MultiUserCoall to it, and
add the objed in there. If the chaining lock fails, an error is reported. In addition, a
MultiUserColl alows pre-locking d the next free Insulator dlot (including
automatic chaining o a new MultiUserColl if necessary), to ensure that an

approaching add operation will be &le to exeaute. This enables better error
handing, as the user is told right at the start of attempting to creade anew graph
that the operation canna succeeal, and is aborted. Removal (e.g. deletion o a
graph) is smpler: the relevant Insulator is locked and reset to empty; if the lock
fails, the user is informed that the graph canna be removed by him; in fad, the
graph must have been removed alrealy in an owerlapping transadion (the only
posshle situation where this user could see the Insulator as nonempty and
locked).

For example, if we try to add a new graph with the situation in the figure,
Insulator 1 is already used, Insulator 2 is empty but our attempt to lock it will be
refused, Insulators 3 and 4 are used, but our attempt to lock the empty Insulator at
slot 5 will be successful, and we can place our new graph in that Insulator.

The value of N, i.e. the size of ead MultiUserColl, can best be determined by
experience within a particular organisation, first rougHy by examining the number
of graphs creaed within a transadion, and then more acarately by
experimentation with dfferent values of N to set the minimum value that yields an
acceptably low incidence of refused locks when trying to creae anew graph. The
use of too high avaue of N will merely slow the system down allittl e, as a larger
MultiUserColl and larger number of Insulators must be read than necessary. In
pradice we have used a value of N=10 with 9 intermittent users of a shared
repository for ayea, and nd once has alock been refused, even when onsevera
occasions most users have been logged in and modelling new data in earnest.

Because the aurrent implementation and value of N have proved sufficient for
our nedls, we have nat further extended the MultiUserColl to allow even more
concurrency. One posshle smple extension would be to make ald operations
attempt to grow the MultiUserColl by chaining before it istotaly full — say when
it is 80% full. This would allow more time for the new chained MultiUserColl to
be committed and made avail able to cther users, who in the meantime would be
using the last 20% of Insulator slots to store their new graphs.

Locks for metamodelling

Modifying information onthe type level differs sggnificantly from instance level
changes, in that changes made to types affed every instance of that type in the
repository. Changes to types may fundamentally change the whole method and
way of working which other users are following, and shoud therefore be treded as
more dangerous than instance level changes. To the best of our knowledge,
existing metaCASE tools only allow one person to make changes to types (i.e., to
metamodel) at a time, and while thanges are being made no aher users of any
kind (even modellers) may be logged in.

MetaEdit+ aims to provide better possbilities for metamodelling
simultaneously with modelling, and for multiple simultaneous metamodellers. It
offers three levels of concurrency: one single exclusive metamodeller; one
metamodell er and several modellers; or several metamodell ers and modellers. The

last level allows one metamodeller for ead projed (in pradice, for ead method).
The doice of which level to use is left up to the repository administrator, being
dependent on local work practices and contingencies.

4 EVALUATION

Vessy & Sravanapud (Ves95) evaluate several multi-user CASE todls on the
fadliti es they offer for task, team and goupwork. They divide their analysis into
control, information sharing and monitoring (teamware aspeds) and co-operation
(groupware asped). Control covers eaurity and accessrights. Information sharing
consists of CASE data sharing, including hypertext and queries; consistency
enforcement; and concurrency control. Monitoring covers isaues of timestamping,
marking d creaor and modifier, and loggng. Co-operation includes provision o
electronic mail and meeting schedulers.

Within eah asped there were several binary questions, ead basicdly
representing a desired functionality. There were diff erent numbers of questions for
ead asped, possbhly refleding the aithors' view on the relative importance of
ead asped. For ead pasitive answer, i.e. pieceof functionality present, a tod
recaved ore point in that asped. The toadls performed much better on information
sharing than any oher area with co-operation hbeing the wedkest area
unsurprising, as the authors themselves recommend that it could mostly be handed
by external tools.

We @plied the aiteria given to MetaEdit+, and the results are shown in Figure
4. The tods examined by Vessy & Sravanapud were only fixed-method CASE
tods, for which provision o multi-user fadliti es is easier than for metaCASE
environments. Even so MetaEdit+, including its method engineeing suppat,
would sean to perform well on the citeria, often performing as well as or better
than the best tod in a cdegory, and even at its worst relative to the tools examined
isonly ore point behind the best in that category. It is worth nding that the tools
examined suppated ony structured analysis and design methoddogies, and that
the analysis ®amed to take alargely relationa database view of concurrency. An
important areanot addressed in the analysis is how fine is the granularity of locks,
and thus how closely users can work concurrently: in this areaMetaEdit+ would be
significantly better than the CASE todls examined. Similarly, the analysis does not
take into acourt the unique fadlities of MetaEdit+ for several concurrent
metamodellers and modellers.

The scores given for MetaEdit+, however, canna be diredly compared to those
obtained for the other CASE tods. The other evaluations were performed and
agread on byseveral people, who were presumably unldased. Whilst | attempt to
be unhiased, | may dtill take adifferent interpretation d some aiteria than the
ealier evaluators. Because of these inherent problems and obvous constraints of
space | do nd set down here my justification o every paint given to MetaEdit+

(individual answers are not given in (Ves95) either). Perhaps Vessy and
Sravanapud, or some other reseachers, would be interested in extending their
criteria and tool selection to cover multi-user metaCASE tools.

Some of the aiteria listed in (Ves95) were not provided by any tod they
examined. It is interesting to nde that generally MetaEdit+ does not provide such
functionality either: perhaps this indicaes that those feaures are not in fad
desirable in CASE (e.g. their suggestion d cdendar or time management
fadliti es). One aeawhere dl tods faired badly, but Metakdit+ provides sme
suppat, was identifying comporents based ontimestamps or change information,
e.g. MetaEdit+ marks all method comporents with their credion date, time and
user. Overall, the performance of MetaEdit+ can be fairly summarised by saying
that it generaly implements those aiteria which are dso implemented in some
other todl, i.e. pradicdly the union d al tools sets of implemented criteria. Its
main contribution, however, isthat it implements these & a metaCASE todl, rather
than the simpler ‘single fixed method’ CASE tools studied/@s@9.

25
2 20 O Cooperation
c
()
GE) 15 O Monitoring
a
E ,
2 19 i | Infor_matlon
o sharing
E E Control
S 59
T
0 - } }
% X

System
Architect
Visible
Analyst
MetaEdit+

Figure4 Collaborative support in some CASE tools and MetaEdit+.

5 CONCLUSIONS AND FURTHER WORK

MetaEdit+ is the first metaCASE environment that suppats multi ple simultaneous
metamodell ers and modell ers in the repository. It is based on a persistent objed
store for Smalltalk using standard transadion semantics. By always alowing free
reading d data and its fine locking ganularity, MetaEdit+ obtains svera of the

benefits expeded from non-standard transadions or other models entirely without
transactions.

MetaEdit+ implements concurrency control with fully automatic locks,
relieving the user of the cnceptual burden of explicitly performing locking,
chedk-in/chedk-out or versioning. Locking granularity varies for different kinds of
data, and norea locks are nealed, allowing a high degree of concurrency whil st
maintaining consistency. A new concurrently updatable alledion data structure
was developed, providing high concurrency even for small colledions, where B-
trees perform most poarly. This slved the problem foundin CASE work that the
colledion d graphs grows fastest, and thus has the highest density of concurrent
updates, when it is smallest.

Whilst MetaEdit+ was ®en to perform well in its suppat for collaborative
work even compared to existing fixed-method CASE tods, there remain some
areas which could be extended. Many organisations have aneed for alarge number
of repository readers using light clients, thus work is in progressto provide a
WWW interfaceto MetaEdit+, that would allow people to browse the repository
withou needing to run MetaEdit+. The interfaceworks via anormal WWW server
cdling a small cgi-bin C program that passs the request on via a socket to a
dightly extended MetaEdit+ client, which accesss the requested data, formats it
into HTML and GIF graphics, and returns it via the qi-bin program and server to
the user.

Currently MetaEdit+ has not been tested with more than 10 concurrent users,
with which it performed well. The underlying ArtBASE database has however
been tested in ather applications with hundeds of users. Overall, we have found
that an oljed store such as ArtBASE forms a sound lasis on which to buld a
sophisticaed CASE environment. Whilst objed store techndogy is not yet as
mature & relational or objed DBMSs, its value & the basis for a CASE repaository
is clear.

MetaEdit+ thus represents the first applicaion to a metaCASE tod of the
collaborative fadliti es found in the best fixed-method CASE toadls. It is to be
hoped that our experiences and reports of its design will encourage and help ather
(meta-) CASE manufadurers to add goupware suppat to their products, and that
MetaEdit+ itself will prove useful to many in research and industry.

5.1 Acknowledgements

| gratefully adknowledge the ading and extensive testing work of Janne Luoma
and Marko Somppi on the integration o the ArtBASE multi-user extensions into
MetaEdit+. My thanks go also to Prof. Jari Veijaainen, for his useful comments
relating the MetaEdit+ repository to other research in databases.

6 REFERENCES

Ald9l

Art93

Be©4

Ben90

Ber96

Che93

Grar6

Kel96

Kel97

Kra95

Luo96

Mar91

Alderson, Albert, “MetasCASE Tedhndogy,” pp. 81-91 in Sdtware
Devdopment Environments and CASE Techndogy, Proceealings of
European S§mposium, Konigswinter, June 17-19 A. Endres and H.
Weber (Ed.) No. 509, Springer-Verlag, Berlin (1991).

ArtinApples, “ArtBASE: Distributed Smalltalk and Objed-Oriented
Database Management System,” ArtinApples Ltd., Bratidava, Slovakia
(1993).

Bedk, Bob, Steve Hartley, “Persistent Sorage for a Workflow Toodl
Implemented in Smalltalk,” ACM SIGPLAN Notices (Procealings of
OOPSLA '94) 2910) (1994) pp.373387.

Bennett, J. K., “Experience with Distributed Smalltalk,” Software —
Practice and Experience 20(1990) pp.15+180.

Bernstein, P. A., “The Repository: A Modern Vision,” Database
Programming & Design 9@) (1996) pp.2835.

Chen, S, J. M. Drake and W. T. Tsai, “Database requirements for a
software engineeing environment: criteria and empirical ewvaluation,”
Information & Software Technology 38)((1993) pp.149161.

Gray, J. N., R. A. Lorie, G. R. Putzolu and |. L. Traiger, “Granularity of
Locks and Degrees of Consistency in a Shared Data Base,” pp. 365-394
in Modelling in Data Base Management Systems, G. M. Nijsen (Ed.),
North Holland (1976).

Kelly, S, K. Lyytinen and M. Rosd, “MetaEdit+: A fully configurable
multi-user and multi-tool CASE and CAME environment,” pp. 1-21 in
Advanced Information Sstems Engineeing, proceedings of the 8th
Internationd Conference CAISE'96, P. Constapouos, J. Mylopoudos and
Y. Vassiliou (Ed.), Springer-Verlag (1996).

Kelly, S, K. Lyytinen, H. Liu, P. Marttiin, H. Oinas-Kukkoren, M. Rosd
and J-P. Tolvanen, “MetaEdit+: CASE Functiondity to Suppot
Production, Coordination andOrganizationd Control And Innovation,”
Chapter 4 in S. Kely's PhD thesis “Towards a Comprehensive
MetaCASE and CAME Environment”, University of Jyvaskyl, Finland
(1997).

Kraut, R. E., L. A. Streder, “Coordination in Sdtware Devdopment,”
CACM 38(3) (1995) pp.6981.

Luoma, J., M. Somppi, “Concurrency Control in Multi-User MetaEdit+
(Samanakaisuuden hdlinta monen kayttdjan MetaEdit+:ss),” Master's
Thesis (in Finnish), TKTL, University of Jyvaskyl&, Finland (1996).
Marmolin, H., Y. Sundbad and B. Pehrson, “An Analysis of Design and
Collaborationin a Distributed Environment,” pp. 147-162in Procealings
of ECSCW '91 2nd European Conference on C$04&1).

Mor90 Moran, T. P., R. J. Anderson, “The Workaday World as a Paradigm for
CSCW Desigrf, pp. 318393 inCSCW 90 ProceedingdCM (1990).

New92 Newman-Wolfe, R. E., M. L. Webb and M. Mortes, “Implicit Locking in
the Ensemble Concurrent Objed-Oriented Graphics Editor,” pp. 265-272
in Procedalings of the 1992 Conference on Computer-Suppoted
Cooperative Work, Jon Turner and Robert Kraut (eds.) (Ed.), ACM Press
Toronto, Canada (1992).

RieB8 Riegel, Steve, Fred Mellender and Andrew Straw, “Integration o
Database Management with an Objed-Oriented Programming Language,”
pp. 317-322 in Advances in Objed-Oriented Database Systems. 2nd
Internationd Workshop on Objed-Oriented Database Systems, K. R.
Dittrich (ed.) (Ed.) Vol. Ledure Notes in Computer Science No. 334,
Springer-Verlag, Berlin (1988).

Rup95 Rupnk-Miklic, E., J. Zupancic, “Experiences and expedations with CASE
techndogy — an example from Sovenia,” Information & Management
28(6) (1995) pp.37+#391.

Sel94 Selamat, M. H., C. Y. Choong A. T. Othman and M. M. Rahim, “Non-
Use Phenomenon d CASE Toodls. Malaysian experience” Information
and Software Technology 3((1994) pp.533537.

Smo91 Smolander, Kari, Kale Lyytinen, Veli-Pekka Tahvanainen and Pentti
Marttiin, “MetaEdit — A Flexible Graphicd Environment for
Methoddogy Modelling,” pp. 168-193in Advanced Information S/stems
Engineeing, Procealings of the Third Internationd Conference
CAISE'9], Trondheim, Norway, May 1991, R. Andersen, J. A. Bubenkojr.
and A. Solvberg (Ed.), Springer-Verlag, Berlin (1991).

Sri93 Srinivasan, V., M. J. Carey, “Performance of B+ Tree Concurrency
Algorithms} VLDB Journal 24) (1993) pp.363406.

Sto93 Stobart, S. C., A. J. van Reeken, G. C. Low, J. J. M. Trienekens, J. O.
Jenkins, J. B. Thompson and D. R. Jeffery, “An Empiricd Evaluation o
the Use of CASE Tods,” pp. 8187 in Procealings of the 6th
Internationd Workshop on Computer-Aided Sdtware Engineeing,
CASE93, Hing-Yan Leg Thomas F. Reid and Stan Jarzabek (Ed.), IEEE
Computer Society (1993).

Tai97 Tavadsaai, A., S. Vaaaniemi, “TDE: Suppating Geographicdly
Distributed Software Design with Shared, Coll aborative Workspaces,” pp.
389-408in Procedalings of CAISE '97, Barcdona, Catalonia, Span, June
16-2Q A. Olivé and J. A. Pastor (Ed.) Vol. 1250, Springer, Berlin (1997).

Ves95 Vessy, |., A. P. Sravanapud, “CASE tods as collabarative suppat
technologies, CACM 38(1) (1995) pp.8395.

