
CASE tool support for co-operative
work in information systems design

Steven Kelly
Dept. of Computer Science and Information Systems,
University of Jyväskylä, PL 35, FIN–40351 Jyväskylä, Finland
Tel: +358 14 603036, Fax: 603011, Email: kelly@cs.jyu.fi

Abstract
The need for asynchronous co-operative work in design is shown by many surveys
of CASE tool use and research on design. MetaEdit+ is a metaCASE environment
that allows multiple simultaneous modellers to work together on designing
information systems and also information systems design methods. We describe
the automatic locking strategies that enable MetaEdit+ to offer a high level of
concurrency whilst guaranteeing consistency, enabling effective co-operative
work. In particular we describe a new collection data structure that allows high
concurrency of updates even at small sizes, fulfilli ng the need in CASE for largest
growth of design information at the start of a project. Finally, we evaluate
MetaEdit+’s collaboration support and performance as teamware, comparing it
with several CASE tools.

Keywords
Co-operative work, multi-user CASE, teamware

1 INTRODUCTION

MetaCASE has long been suggested as the answer to many of the current problems
of CASE tools, in particular their inflexibilit y. Whilst a normal CASE tool
supports only a single fixed method for designing information systems, a
metaCASE tool can be configured by the user to support different methods. This
allows organisations to support those methods they already have in use, and
modify them as necessary to address their changing needs: vital in today’s world
where technology and methods change so quickly. Recently commercial and
academic metaCASE tools have started to appear, with a few tools serious enough

to take into industrial use. However, none of these tools support metaCASE in a
multi -user environment, and most are single user even for CASE work. This is
particularly odd, as metaCASE is really only useful in a multi -user environment:
developing and using a custom method is not normally cost effective for a single
user.

Even standard CASE tools have been slow to move from single to multi -user
support. Empirical research has shown the current lack of multi -user support in
CASE tools is a serious problem (Sto93, Rup95). In particular, Selamat et al.
(Sel94) found that lack of multi -user support was the single largest CASE-specific
reason why CASE tools were not being adopted in Malaysia. In addition to these
questionnaire-based surveys of organisations, an empirical laboratory examination
by Vessey & Sravanapudi (Ves95) found that support for co-operative working
was poor in current CASE tools.

Another commonly identified source of discontent with CASE tools is the lack
of integration between methods within a tool (Sto93, Rup95). This can often be
explained by the fact that many tools use a simple file-based system for storage,
rather than a true repository: each model is stored in its own file, and there is no
linking between files, thus nor between models of different methods.

MetaEdit+ is a multi -user repository-based metaCASE environment which was
produced by the MetaPHOR research project, and has been commercialised and
available as a full product since November 1996. Other papers have examined its
metaCASE features (Kel96) and innovative CASE features (Kel97); in this paper
we concentrate on its multi-user functionality.

In the next section, we will examine related research and the requirements for
multi -user CASE, then give a brief overview of MetaEdit+ and its ArtBASE
database. Following that we will describe and evaluate the co-operative support
MetaEdit+ offers through its automatic locking strategies and novel data structures.
The success of these solutions in making MetaEdit+ a multi -user metaCASE tool is
then evaluated briefly according to the criteria of Vessey and Sravanapudi
(Ves95). Finally we conclude and examine some directions for future research.

2 BACKGROUND

2.1 Related research

To our knowledge there has been no recent empirical research on how designers
use CASE tools co-operatively in practice, although among others Kraut and
Streeter (Kra95) examine designers’ communication in a wider organisational
setting.

There are a large number of single or simple multi -user CASE tools. However,
attempts to make more sophisticated CASE tools and metaCASE tools multi -user
seem to founder: in particular many of the few manufacturers who have announced

such multi -user metaCASE tools have later withdrawn them (Paradigm+,
Excelerator/Customizer, ASTI Graphical Designer / MethodBuilder). Similarly, it
appears to be easy to make a simple single user metaCASE research prototype: no
end of examples can be found, but these are almost never developed into full
functionality multi-user metaCASE environments.

Apart from MetaPHOR, two other significant research projects have worked on
extending CASE and metaCASE technology with possibiliti es for computer-
supported collaborative work (CSCW), and produced something more than a
prototype.

Lincoln (previously IPSYS) ToolBuilder (initially described in (Ald91)) has a
multi -user repository solution for CASE with the possibilit y to configure the
methods supported. Methods are configured by using three different proprietary
textual languages. Whilst this can be considered as metaCASE, the time taken to
specify a new method is an order of magnitude larger than in MetaEdit+, and made
more diff icult by the separation of the metaCASE and CASE components into
different tools, making testing and correcting a lengthy process of exporting,
compili ng, and linking the new metamodel to the CASE tool each time. This
involves all users exiting, upgrading their CASE tool, restarting it and logging in to
the repository again.

The second research project, at Nokia corporation, has produced TDE (Tai97),
a CSCW design environment that includes some CASE functionality and the
possibilit y of changing the methods supported. It allows near instantaneous
updates of design data between multiple users using a special notification server
they have developed, which runs in addition to the underlying ObjectStore
database: the normal transaction protocol in ObjectStore is far too slow to use for
such fast updates of models between users. Whilst the CSCW implementation is
strong, the CASE functionality is limited to that of f low-charter type tools: any
kind of relationship can be drawn between any kinds of objects, and there is no
code generation. Methods can be changed from outside TDE using a textual
language, but this includes only the basic ERA concepts and thus represents at best
significantly limited metaCASE functionality. Whilst TDE is undoubtedly useful
within a single corporation with a single method, and represents an important
move away from the many CSCW drawing tools towards synchronous CSCW
CASE, that move cannot be said to have been completed yet.

In addition to these, and interesting to us because of their similar development
environment, a simple fixed-method workflow CASE tool was developed in
Smalltalk in (Bec94). Their initial implementation used an RDBMS, but this was
found to be very diff icult to work with, requiring duplication of many data
structures: one version for actual use and another relationalised version for the
database, leading to large amounts of code just for these and maintaining
consistency between them. They found the move to a product similar to ArtBASE
very easy, and it solved the problems stated and provided many benefits.

2.2 Requirements for multi-user (meta-)CASE

Vessey and Sravanapudi (Ves95) provide an extensive set of references and
motivation on the requirements for multi -user CASE. They divide the needed
functionality into taskware (basic CASE functionality, no communication
necessary), teamware (CASE information sharing, access control and monitoring),
and groupware (non-CASE communication, time and meeting management). They
exclude taskware from their investigation of collaboration support in existing
CASE tools; the absence of communication places it outside their field of interest.
We agree with their opinion that most groupware functionality ‘could be provided
by generalized, task-independent packages (e.g. electronic mail , bulletin boards,
calendaring capabiliti es)’ : MetaEdit+ thus does not duplicate such functionality.
Thus the most prominent needs are for teamware, in particular the abilit y to share
information, with concurrency control ‘ to resolve conflict and support tightly
coupled group activities’ . They perceive groups as working most frequently in
asynchronous mode, but also sometimes needing to access shared resources at the
same time.

Newman-Wolfe et al. (New92), writing about the Ensemble concurrent
graphics editor, sum up the desired behaviour for collaboration in editing thus:
“sharing should be as transparent as possible to the user, yet details of that sharing
should be available if desired” . This is the guiding idea we have followed in
implementing the concurrency behaviour of MetaEdit+. Chen et al. (Che93)
include as the first requirement for a software engineering database that there
should be consistency within a transaction: “Data changes due to a transaction are
not visible until the transaction has successfully committed” .

An important point to consider for a CASE repository is the behaviour that
designers are used to: a prime rule of human computer interaction is to avoid
unexpected behaviour. Designers are often programmers too, and programming
collaboration tools in general have an atomic transaction concept, e.g. SCCS and
Envy. Thus the same atomicity should be observed in a CASE repository. The
workaday world is suggested as a paradigm for CSCW design (Mor90): in other
words, the work practices in use before computerisation should be those followed
(with improvements) in the computerised support. Before multi -user CASE tools
— and in many cases even after their introduction — designers worked on their
designs largely alone, and the end product of each mini-cycle of design and
improvement was released to colleagues. Thus the interface that each designer
worked with was a paper version of another colleague’s work, which became out
of data over a period of days to weeks, before being replaced by an updated
version. This suggests that there is littl e need for synchronous updates, but a
constant need to view the most up-to-date released version of someone else’s
design, even if they are currently changing that design. This view is endorsed by
Marmolin et al. (Mar91) who conclude that in design work the need is especially
for asynchronous co-working: synchronous co-working does not seem to be

important. Newman-Wolfe’s requirement for availabilit y of details would motivate
the low-key display of information that that design is being updated, and
availability of more information, e.g. who is updating it.

2.3 MetaEdit+

MetaEdit+ is a full metaCASE environment that supports both CASE and
metaCASE for multiple users within the same environment. It supports and
integrates multiple methods and includes multiple editing tools for diagrams,
matrices and tables. It was developed in the MetaPHOR project, which had earlier
developed the single user MetaEdit metaCASE tool (Smo91). Figure 1 shows the
architecture of MetaEdit+, which is client-server with the server containing a
central MetaEngine and various tools.

 Figure 1 Architecture of MetaEdit+.

The information heart of the MetaEdit+ environment is the Object Repository. The
repository is implemented as a database running at a central server: clients
communicate only through shared data and state at the server. All i nformation in
MetaEdit+ is stored in the Object Repository, including methods, diagrams,
matrices, objects, properties, and even font selections. Hence, modification of
system designs (or methods) in one MetaEdit+ client is automatically reflected to
other clients on commit, guaranteeing consistent and up to date information. The
Object Repository itself is designed to be mostly invisible to users. The use of the
repository is visible only when a user starts or exits MetaEdit+, opens or closes
projects, and commits or abandons transactions.

Project1

Project2

Project3

Graph1

Graph2

Graph3

= persistent object

= contains

Object1

Object2

Object3

Property1

Property2

Property3

Repository

GraphTypeC

GraphTypeB

GraphTypeA

ObjectTypeC

ObjectTypeB

ObjectTypeA

PropertyTypeC

PropertyTypeB

PropertyTypeA

= instance of

Types

Types

Types

Graph4

GraphTypeD

 Figure 2 Structure of the repository (abridged).

A repository is composed of projects, each of which contains a set of graphs that
describe a particular system, and possibly some metamodels. Figure 2 shows a
partial view of the structure of a typical example repository. Project1 contains only
types, which are implemented as Smalltalk classes: several graph types, each of
which uses several object, relationship and role types, each of which uses several
property types. Project2 contains only instances of types, i.e. graphs that contain
objects that have properties. These are instances of types defined in Project1: for
instance, Graph1 is an instance of GraphTypeA. Project3 contains both types and
instances, with an example shown of Graph4 being an instantiation of
GraphTypeD. Omitted from the figure for the sake of clarity are representations:
each graph instance may have several representations, for instance as a graphical
diagram or as a matrix, of its conceptual contents. Similarly, objects, relationships
and roles have representations which are stored within the appropriate graph
representation. Opening a project reads all the graphs in that project, so they are

visible to users, e.g. in browsers. However, not all objects, properties etc. are read:
these are only read as they are needed, e.g. when they are being displayed in a
graph which the user opens. Objects are cached when read, and thus are only read
once per session over the network: performance after that initial read is identical to
non-persistent objects, and the object is only read again if another user changes it.

On a lower level, each project exists as an area in the repository. Each
persistent object is actually persistent in one particular area. MetaEdit+ stores in
each area one persistent ‘project’ object, which simply acts as a root by pointing to
all graphs in that area: from the graphs one can follow on to read all other parts of
model data in that area. Projects thus directly contain only graphs.

2.4 ArtBASE

ArtBASE is a library of classes which add persistence to Smalltalk objects, plus a
separate Smalltalk server program (Art93). The server is the same for all ArtBASE
applications. ArtBASE has been tested in various applications in both industrial
and public sector settings, with hundreds of simultaneous users accessing the same
repository. The work required by the client application programmer is small , as
there is no separate database sublanguage. The only calls necessary are to make an
object persistent; to increase performance it is also normal to mark objects as
needing to be saved when they have been changed. This is a much smaller amount
of work than is generally needed even for an OODBMS, and represents a tiny
fraction of the code needed for interfacing with a relational database: see e.g.
(Bec94).

ArtBASE automatically implements optimistic concurrency: transactions are
only allowed to commit i f they do not conflict with reads and writes of other
overlapping transactions that have already committed. Thus the repository is
guaranteed consistent automatically. To avoid users having to abandon their work
in transactions, ArtBASE also allows pessimistic concurrency: objects can be read,
write or exclusive locked before they are operated on, thus preventing operations
that would later cause a transaction to be unable to commit.

ArtBASE transactions are fully ACID, although some of the constraints can be
relaxed, for example by turning off checking of read-write conflicts. ArtBASE
supports the highest degree (3) of consistency, as defined in Gray et al. (Gra76):
reads are repeatable within a transaction, i.e. the value read will not change;
changes are only visible to other users when committed; all writes from a
transaction are committed together; and users cannot overwrite data changed but
not yet committed by another user.

A similar approach to that used in ArtBASE was taken by Riegel et al. (Rie88)
in the Alltalk system. There the Smalltalk object engine was changed to calculate
from a transitive closure from the database which new objects needed to be stored
in the database, and to recognise from assignments when an object had been
changed and needed to be updated in the database. However, Alltalk was not

commercially available, and the article states that there was no support for locks or
other mechanism for controlling sharing of data.

There have been other commercial products similar to ArtBASE, but none
available in 1993 (when MetaEdit+ development began) treated classes and
metaclasses as first class objects and allowed free linking between any objects.
OODBMSs such as GemStone required maintenance of the schema to be specified
in both Smalltalk and their own proprietary schema language: we would thus have
been forced to keep two separate descriptions of the schema and maintain their
consistency each time any change was made to metamodels. Chen et al (Che93)
evaluated GemStone for software engineering, finding that its concurrency support
was poor: if one user made a change and committed, no other user could commit
any change. To see the other user’s changes, users had to first log out and log back
in again (this has since been improved). Another possibilit y, Distributed Smalltalk
(Ben90) was ruled out because the implementation did not allow class changes to
be propagated to other users, rendering class-based metamodelli ng impossible.
More recent versions of these environments may have overcome some of these
drawbacks.

3 LOCKS IN ARTBASE AND METAEDIT+

In MetaEdit+ we have based our concurrency support on automatic locking
strategies rather than user-handled versioning or configuration management. This
relieves designers of the cognitive load of handling concurrency themselves (e.g.
by always making explicit versions), freeing them to concentrate on design, whilst
at the same time guaranteeing the consistency of the repository.

In this section we will l ook at how locks are used innovatively within
MetaEdit+ to provide a high level of concurrency whilst maintaining consistency.
First we will l ook at the basic concepts of locks in ArtBASE and their general use
in MetaEdit+, and then at the specific application of these concepts to different
kinds of data in MetaEdit+.

3.1 Concepts

There are three basic concepts which we will use in our explanations: session,
transaction, and lock. We will first describe these, and also classify the different
kinds of data in MetaEdit+ from the point of view of locking.

Sessions
In MetaEdit+ a session is defined as the time from when a user logs in to the
repository to when he logs out. As a rough guide, a session would normally last for
a work day or some part of a day, and is generally the same as the time for which

the user is running MetaEdit+. Each session is composed of one or more
transactions.

Transactions
In MetaEdit+, a transaction is an atomic unit of work: until a transaction is
committed, other users cannot cannot see any of the work done during that
transaction. Users end a transaction either explicitly by committing it or implicitly
by logging out. Transactions also provide a measure of undo functionality by
allowing to abandon a transaction.

At the start of each session, when a user logs in to the repository, a transaction
is started for that user. The repository will remember its state at that instant, and
throughout the transaction the repository will provide information as it was at the
instant the transaction was started. Similarly, none of the changes the user makes
to the information in the repository will be visible to other users until the user ends
his transaction by committing it. At that point all his changes will be written to the
repository, and will t hen be available to other users, but only read by them when
they next start a transaction (remember that their current transactions will still be
using the information available from the time they were started).

Locks
We have tried to base our user-visible multi -user behaviour on the everyday world
(Mor90). In the everyday world, a person locks something if he wants to prevent
others from manipulating it or removing it. A lock will prevent changes — your
bike wheel disappearing, or your house being damaged — but in general will not
prevent others seeing something (they can look at your bike, or peer in through
your windows). The situation is in many ways similar in MetaEdit+, but here the
main aim is to prevent two people making changes to the same information, rather
than directly destructive acts. Thus if another user has locked something, you can
still look at it, but you cannot change it.

In addition to its automatic optimistic concurrency control, which would not
allow suff icient concurrency for CASE (cf. Bec94), ArtBASE supports read, write
and exclusive locks. These locks can be obtained in one of two duration modes:
transaction and session. A transaction lock is automatically released (the
information is unlocked) at the end of the current transaction, releasing it for other
users. A session lock persists over into each new transaction, until the information
is unlocked by some other action. For instance, graphs are session locked while
they are open in an editor, and the session lock is only released when the user
closes the editor.

When a user attempts to change a piece of information in MetaEdit+, that piece
of information will first be write locked, and only if that lock was successful will
the change be allowed. A lock is successful i f nobody else has held a lock on that
piece of information in a transaction which overlaps with his.

No information is ever read locked. Because no atomic operation in MetaEdit+
reads one data value and writes other data on the basis of that value, this is
perfectly safe as regards low-level consistency. On a higher, semantic, level, it is
of course possible for a user to make a change based on information he can read
but which is currently being changed. We do not regard this as a problem, but
rather a common part of the design process: users are already used to basing their
own work on the last released versions of others’ work. We believe the benefits of
being able to view all data at all ti mes significantly outweigh the problems,
following the research results of (Mar91, New92, Ves95). MetaEdit+ makes
visible to the user if information is being changed by another user, thus allowing
them to proceed, contact the user for details of the changes, or commit to read the
changed version.

Types of data
For our purposes, we can divide data in MetaEdit+ into four kinds:

• conceptual objects, relationships, roles and properties
• conceptual graphs, and representational graphs and their elements
• projects, i.e. collections of related graphs
• metamodels.

A representational graph is a diagram, matrix or table. A conceptual graph is the
‘real’ data that underlies that representational graph: a conceptual graph may have
several different representations. Information stored by a representational graph
and its elements includes the positions of individual symbols, the order of items on
an axis in a matrix, or the widths of the columns in a table. Correspondingly a
conceptual graph stores information about which objects belong to the graph, how
they are connected together via relationships, and what other graphs they explode
to. Graphs in MetaEdit+ are organised into projects, which consist of a name and a
set of graphs. Information may be freely linked and reused between different
projects, but each graph belongs primarily to only one project.

3.2 Automatic locking strategies

MetaEdit+ automates all the functionality connected with supporting multiple
users: it is perfectly possible to use it without knowing anything of the underlying
principles. This is made possible by a set of automatic locking strategies: by
inferring from user behaviour which operations he is about to perform on which
data, we can lock that data in advance, thus guaranteeing that he will be able to
perform the operations, or, if the lock fails, he can see that he can only view the
data, and can also see who holds the lock.

Thus locking is performed automatically by MetaEdit+ on behalf of the user,
based on the user’s actions. In contrast, starting and ending sessions and

transactions are actions that are explicitly carried out by the user. Why this
distinction? Virtually every action in MetaEdit+ requires some kind of locking
operation or check, and the burden on the user of manually setting and releasing
the locks would be huge. In addition, the safety of the work done in a transaction
depends on the correct locks being obtained at the correct times: any mistake, and
the transaction will probably be unable to commit because of conflicting changes
with another user. Transaction commit on the other hand is a question of dividing
work up into semantically coherent units, the general size of which depends on
many situational factors. Similarly, if a transaction were automatically committed,
the user would then lose the possibilit y of aborting and thus undoing the actions of
that transaction. Thus only the user himself can decide with any accuracy when to
commit.

In MetaEdit+, locks are used differently depending on the kind of information
and the current circumstances. Here we explain the types of locks and the different
locking strategies in use in MetaEdit+. These different types of lock and locking
strategies are designed to reflect the normal pattern of CASE usage, to give the
most efficient and invisible support.

As we have seen, ArtBASE already provides the locking primitives. On top of
these we have developed a LockingSystem (Luo96) which interfaces with the
MetaEngine and provides the following functionality:

• It automates the request of various frequently met collections of locks, so that
either all locks are obtained, or none (if some lock is not available)

• It provides handling, reporting and logging of failed locks
• It modifies caching of lock information to improve the default ArtBASE

behaviour.

Much locking in MetaEdit+ is handled by the MetaEngine through the
LockingSystem without tool implementers needing to worry about it. Tools and
editors in MetaEdit+ are responsible for locks specific to their representation data,
and call the utility functions of the LockingSystem for these.

We shall now look at how the automatic locking works with respect to different
kinds of data. We shall proceed in order of increasing size, examining locking for
objects, relationships, roles and their properties, then for graphs, then for projects,
where we introduce a new multi -user persistent collection. Finally we shall
examine the special locking solutions required for metamodels.

Objects etc.
Individual objects, relationships, and roles, and their individual properties are
locked only when the user explicitly opens them in a property dialog. When a user
opens a dialog on an object’s properties, MetaEdit+ attempts to lock all that
object’s properties, so they can be changed. If one or more of the locks fail , then
no locks are taken, and the user can only view the properties in the property dialog:
the OK button will be greyed. If all l ocks were obtained, the user will be able to

press the OK button to accept his changes. The reason behind locking all
properties and not just those that are changed is two-fold. Firstly, we want to take
the locks when the property dialog is opened, before the user starts to make
changes, so he can see straight away whether his changes would be accepted.
Secondly, the information in the various properties is normally semantically
interlinked, even though there are no links in the actual data: the range of
semantically correct values in one property of an object depend on the values of
the other properties. If only changed properties were locked, two users could make
changes to non-intersecting subsets of the properties with no lock conflicts, but
resulting in a semantically inconsistent state of the objects’ properties.

Graphs
When opening an editor on a representational graph, MetaEdit+ will automatically
try to obtain locks both for the representational graph, and for the underlying
conceptual graph. The success of these locks determines which actions the user
may perform in that editor: if one or both locks fail , the editor will still open, but
some of the menu items will be greyed, and other e.g. mouse operations may have
no effect. The conceptual objects etc. and representational elements within the
graph are not locked: the conceptual objects are thus still free to be edited by other
users who access them via an editor without locks on this graph, or via any other
graph or place they are reused. In contrast, representational elements are not
reused, and thus cannot be reached and edited other than via an editor on this
representational graph. The editor only allows modifications to representational
elements if the lock on the representational graph is held, thus the representational
elements are effectively ‘ locked’ , but without the overhead of explicitly locking
each one of them.

For instance, if a diagram is opened and locked successfully, but the conceptual
graph is not able to be locked, the user will be able to move symbols around in the
diagram, but not be able to add new objects or relationships to the graph. He will
however be able to add a symbol for an object that already exists in the conceptual
graph, or show a relationship that already exists there. If neither lock were
obtained, the user’s actions will be restricted to scrolli ng, zooming, viewing
selected types, and editing the properties of the objects etc. in the graph. Lock
information in editors is visible through the menu bar, and the user may view
further information about who holds any locks which he was not granted.

If a user knows he is opening a graph for viewing only, he can specify this
while he opens it, and he will t hen not be granted any locks and will be unable to
modify it. He can of course reverse this decision later and open it again normally,
thus attempting to gain the locks.

Projects
One of the most diff icult aspects of implementing locking in MetaEdit+ was
projects. Each project stores a collection of all the graphs it contains: many users

may simultaneously (i.e. in overlapping transactions) want to add a new graph, and
therefore need to write lock and modify the collection itself. The traditional
solution to such problems of shared collections has been to use a B-tree (or
similar), and an implementation of B-trees already existed in ArtBASE. However,
the B-tree structure only becomes eff icient once the number of leaves becomes
large, yet at the start of a project, when new graphs are being added at the greatest
speed, the collection is initially empty. The largest natural number of graphs for a
project is well below 100, thus a B-tree approach, where a typical node size is 50,
would be ineff icient in terms of storage space and performance. Similarly, the
performance of a general-purpose B-tree is at its worst if keys are inserted in an
ascending order: splits occur often and 50% of the storage space are wasted.
Logical OIDs, however, form the only possible key for graphs in general, and
these are allocated in ArtBASE in an ascending order, as is general in object-
oriented databases.

More seriously, index structures like B-trees have proved to be a serious
bottleneck of the system if they are updated by multiple users simultaneously.
Several techniques to improve concurrency and recovery have been proposed and
tested (Sri93). Nevertheless, the implementation of these algorithms is diff icult and
frequent modifications still reduce the performance of the system significantly. In
particular, concurrency appears to be at its worst when the collection is small ,
whereas our need for concurrency is highest then, as many users create many
graphs in a new project.

As projects are not expected to grow to contain much more than 100 graphs,
and we have no need for fast key access — and indeed no useful source of keys —
we do not benefit from the positive sides of B-trees, and are seriously affected by
their negative sides. To solve this problem I designed a new kind of multi -user
collection. It may be interesting to note that Beck and Hartley (Bec94) also found
the need to extend the ArtBASE-like library of classes they used in their fixed-
method CASE tool with new persistent collection classes. Their additions were
however simply automatic marking of the collection as changed when elements
were added or removed; my MultiUserColl i ncludes this but its main purpose was
to address a somewhat more complicated problem.

The basis of the MultiUserColl collection is a persistent array containing N
elements, where each element is itself a persistent object, called an Insulator. An
Insulator is a simple object, which holds one other object, or holds nil i f it is
currently unused. Insulators are persistent in their own right, and can thus be
locked independently of each other and of the parent MultiUserColl . The
MultiUserColl also has a ‘chain’ variable which is initially nil , but can hold
another MultiUserColl , thus forming a chain of MultiUserColls to support more
than N members in the collection. Initially a new MultiUserColl contains an empty
Insulator in each place.

1

2

3

4

5

Insulator

Insulator

Insulator

Insulator

Insulator

chain

nil

nil

nil

Graph A

Graph C

Graph D

Insulator

Insulator

Insulator

Insulator

Insulator

nil

nil

Graph F

nil

nil

MUC

*

1

2

3

4

5

chain

MUC

= persistent object

= aggregation

* = locked

 (instance variable)

 Figure 3 A MultiUserColl after several operations.

The figure shows a MultiUserColl as seen in one client after several transactions
have added graphs (Graphs A to F, which caused a second MultiUserColl to be
chained on to the first) and also removed some graphs (as seen by the empty
Insulators at slots 2 and 5, where Graphs B and E were). The Insulator at slot 2 is
locked but empty, because another user has added a graph (say Graph G) there in
an overlapping transaction: this client cannot see that graph until after commit, but
can see that the slot is locked, and thus cannot be used.

Iterative and collection operations on the MultiUserColl are redefined so that
they operate only on the held values of non-empty Insulators, and so that they
invisibly follow on to any chained MultiUserColls. Thus the standard collection
API of the MultiUserColl behaves identically to other collections, hiding the
implementation details from application programmers. When adding objects, the
MultiUserColl scans through its Insulators to find the first empty Insulator for
which an attempted lock is successful. It then places the added object into that
Insulator. If there are no empty lockable Insulators in the chained MultiUserColls,
it attempts to lock the last MultiUserColl to chain a new MultiUserColl to it, and
add the object in there. If the chaining lock fails, an error is reported. In addition, a
MultiUserColl allows pre-locking of the next free Insulator slot (including
automatic chaining of a new MultiUserColl i f necessary), to ensure that an

approaching add operation will be able to execute. This enables better error
handling, as the user is told right at the start of attempting to create a new graph
that the operation cannot succeed, and is aborted. Removal (e.g. deletion of a
graph) is simpler: the relevant Insulator is locked and reset to empty; if the lock
fails, the user is informed that the graph cannot be removed by him; in fact, the
graph must have been removed already in an overlapping transaction (the only
possible situation where this user could see the Insulator as non-empty and
locked).

For example, if we try to add a new graph with the situation in the figure,
Insulator 1 is already used, Insulator 2 is empty but our attempt to lock it will be
refused, Insulators 3 and 4 are used, but our attempt to lock the empty Insulator at
slot 5 will be successful, and we can place our new graph in that Insulator.

The value of N, i.e. the size of each MultiUserColl , can best be determined by
experience within a particular organisation, first roughly by examining the number
of graphs created within a transaction, and then more accurately by
experimentation with different values of N to set the minimum value that yields an
acceptably low incidence of refused locks when trying to create a new graph. The
use of too high a value of N will merely slow the system down a littl e, as a larger
MultiUserColl and larger number of Insulators must be read than necessary. In
practice, we have used a value of N=10 with 9 intermittent users of a shared
repository for a year, and not once has a lock been refused, even when on several
occasions most users have been logged in and modelling new data in earnest.

Because the current implementation and value of N have proved suff icient for
our needs, we have not further extended the MultiUserColl to allow even more
concurrency. One possible simple extension would be to make add operations
attempt to grow the MultiUserColl by chaining before it is totally full — say when
it is 80% full . This would allow more time for the new chained MultiUserColl to
be committed and made available to other users, who in the meantime would be
using the last 20% of Insulator slots to store their new graphs.

Locks for metamodelling
Modifying information on the type level differs significantly from instance level
changes, in that changes made to types affect every instance of that type in the
repository. Changes to types may fundamentally change the whole method and
way of working which other users are following, and should therefore be treated as
more dangerous than instance level changes. To the best of our knowledge,
existing metaCASE tools only allow one person to make changes to types (i.e., to
metamodel) at a time, and while changes are being made no other users of any
kind (even modellers) may be logged in.

MetaEdit+ aims to provide better possibiliti es for metamodelli ng
simultaneously with modelli ng, and for multiple simultaneous metamodellers. It
offers three levels of concurrency: one single exclusive metamodeller; one
metamodeller and several modellers; or several metamodellers and modellers. The

last level allows one metamodeller for each project (in practice, for each method).
The choice of which level to use is left up to the repository administrator, being
dependent on local work practices and contingencies.

4 EVALUATION

Vessey & Sravanapudi (Ves95) evaluate several multi -user CASE tools on the
faciliti es they offer for task, team and group work. They divide their analysis into
control, information sharing and monitoring (teamware aspects) and co-operation
(groupware aspect). Control covers security and access rights. Information sharing
consists of CASE data sharing, including hypertext and queries; consistency
enforcement; and concurrency control. Monitoring covers issues of timestamping,
marking of creator and modifier, and logging. Co-operation includes provision of
electronic mail and meeting schedulers.

Within each aspect there were several binary questions, each basically
representing a desired functionality. There were different numbers of questions for
each aspect, possibly reflecting the authors’ view on the relative importance of
each aspect. For each positive answer, i.e. piece of functionality present, a tool
received one point in that aspect. The tools performed much better on information
sharing than any other area, with co-operation being the weakest area:
unsurprising, as the authors themselves recommend that it could mostly be handled
by external tools.

We applied the criteria given to MetaEdit+, and the results are shown in Figure
4. The tools examined by Vessey & Sravanapudi were only fixed-method CASE
tools, for which provision of multi -user faciliti es is easier than for metaCASE
environments. Even so MetaEdit+, including its method engineering support,
would seem to perform well on the criteria, often performing as well as or better
than the best tool in a category, and even at its worst relative to the tools examined
is only one point behind the best in that category. It is worth noting that the tools
examined supported only structured analysis and design methodologies, and that
the analysis seemed to take a largely relational database view of concurrency. An
important area not addressed in the analysis is how fine is the granularity of locks,
and thus how closely users can work concurrently: in this area MetaEdit+ would be
significantly better than the CASE tools examined. Similarly, the analysis does not
take into account the unique faciliti es of MetaEdit+ for several concurrent
metamodellers and modellers.

The scores given for MetaEdit+, however, cannot be directly compared to those
obtained for the other CASE tools. The other evaluations were performed and
agreed on by several people, who were presumably unbiased. Whilst I attempt to
be unbiased, I may still t ake a different interpretation of some criteria than the
earlier evaluators. Because of these inherent problems and obvious constraints of
space, I do not set down here my justification of every point given to MetaEdit+

(individual answers are not given in (Ves95) either). Perhaps Vessey and
Sravanapudi, or some other researchers, would be interested in extending their
criteria and tool selection to cover multi-user metaCASE tools.

Some of the criteria listed in (Ves95) were not provided by any tool they
examined. It is interesting to note that generally MetaEdit+ does not provide such
functionality either: perhaps this indicates that those features are not in fact
desirable in CASE (e.g. their suggestion of calendar or time management
faciliti es). One area where all tools faired badly, but MetaEdit+ provides some
support, was identifying components based on timestamps or change information,
e.g. MetaEdit+ marks all method components with their creation date, time and
user. Overall , the performance of MetaEdit+ can be fairly summarised by saying
that it generally implements those criteria which are also implemented in some
other tool, i.e. practically the union of all tools’ sets of implemented criteria. Its
main contribution, however, is that it implements these as a metaCASE tool, rather
than the simpler ‘single fixed method’ CASE tools studied in (Ves95).

0

5

10

15

20

25

D
ef

t

Ic
on

ix

S
ys

te
m

A
rc

hi
te

ct

V
is

ib
le

A
na

ly
st

M
et

aE
di

t+

F
u

n
ct

io
n

s
im

p
le

m
en

te
d Cooperation

Monitoring

Information
sharing

Control

 Figure 4 Collaborative support in some CASE tools and MetaEdit+.

5 CONCLUSIONS AND FURTHER WORK

MetaEdit+ is the first metaCASE environment that supports multiple simultaneous
metamodellers and modellers in the repository. It is based on a persistent object
store for Smalltalk using standard transaction semantics. By always allowing free
reading of data and its fine locking granularity, MetaEdit+ obtains several of the

benefits expected from non-standard transactions or other models entirely without
transactions.

MetaEdit+ implements concurrency control with fully automatic locks,
relieving the user of the conceptual burden of explicitly performing locking,
check-in/check-out or versioning. Locking granularity varies for different kinds of
data, and no read locks are needed, allowing a high degree of concurrency whilst
maintaining consistency. A new concurrently updatable collection data structure
was developed, providing high concurrency even for small collections, where B-
trees perform most poorly. This solved the problem found in CASE work that the
collection of graphs grows fastest, and thus has the highest density of concurrent
updates, when it is smallest.

Whilst MetaEdit+ was seen to perform well i n its support for collaborative
work even compared to existing fixed-method CASE tools, there remain some
areas which could be extended. Many organisations have a need for a large number
of repository readers using light clients, thus work is in progress to provide a
WWW interface to MetaEdit+, that would allow people to browse the repository
without needing to run MetaEdit+. The interface works via a normal WWW server
calli ng a small cgi-bin C program that passes the request on via a socket to a
slightly extended MetaEdit+ client, which accesses the requested data, formats it
into HTML and GIF graphics, and returns it via the cgi-bin program and server to
the user.

Currently MetaEdit+ has not been tested with more than 10 concurrent users,
with which it performed well . The underlying ArtBASE database has however
been tested in other applications with hundreds of users. Overall , we have found
that an object store such as ArtBASE forms a sound basis on which to build a
sophisticated CASE environment. Whilst object store technology is not yet as
mature as relational or object DBMSs, its value as the basis for a CASE repository
is clear.

MetaEdit+ thus represents the first application to a metaCASE tool of the
collaborative faciliti es found in the best fixed-method CASE tools. It is to be
hoped that our experiences and reports of its design will encourage and help other
(meta-)CASE manufacturers to add groupware support to their products, and that
MetaEdit+ itself will prove useful to many in research and industry.

5.1 Acknowledgements

I gratefully acknowledge the coding and extensive testing work of Janne Luoma
and Marko Somppi on the integration of the ArtBASE multi -user extensions into
MetaEdit+. My thanks go also to Prof. Jari Veijalainen, for his useful comments
relating the MetaEdit+ repository to other research in databases.

6 REFERENCES

Ald91 Alderson, Albert, “Meta-CASE Technology,” pp. 81–91 in Software
Development Environments and CASE Technology, Proceedings of
European Symposium, Königswinter, June 17–19, A. Endres and H.
Weber (Ed.) No. 509, Springer-Verlag, Berlin (1991).

Art93 ArtInApples, “ArtBASE: Distributed Smalltalk and Object-Oriented
Database Management System,” ArtInApples Ltd., Bratislava, Slovakia
(1993).

Bec94 Beck, Bob, Steve Hartley, “Persistent Storage for a Workflow Tool
Implemented in Smalltalk,” ACM SIGPLAN Notices (Proceedings of
OOPSLA '94) 29(10) (1994) pp.373–387.

Ben90 Bennett, J. K., “Experience with Distributed Smalltalk,” Software —
Practice and Experience 20(2) (1990) pp.157–180.

Ber96 Bernstein, P. A., “The Repository: A Modern Vision,” Database
Programming & Design 9(12) (1996) pp.28–35.

Che93 Chen, S., J. M. Drake and W. T. Tsai, “Database requirements for a
software engineering environment: criteria and empirical evaluation,”
Information & Software Technology 35(3) (1993) pp.149–161.

Gra76 Gray, J. N., R. A. Lorie, G. R. Putzolu and I. L. Traiger, “Granularity of
Locks and Degrees of Consistency in a Shared Data Base,” pp. 365–394
in Modelli ng in Data Base Management Systems, G. M. Nijssen (Ed.),
North Holland (1976).

Kel96 Kelly, S., K. Lyytinen and M. Rossi, “MetaEdit+: A fully configurable
multi -user and multi -tool CASE and CAME environment,” pp. 1–21 in
Advanced Information Systems Engineering, proceedings of the 8th
International Conference CAISE'96, P. Constapoulos, J. Mylopoulos and
Y. Vassiliou (Ed.), Springer-Verlag (1996).

Kel97 Kelly, S., K. Lyytinen, H. Liu, P. Marttiin, H. Oinas-Kukkonen, M. Rossi
and J.-P. Tolvanen, “MetaEdit+: CASE Functionality to Support
Production, Coordination and Organizational Control And Innovation,”
Chapter 4 in S. Kelly’s PhD thesis “Towards a Comprehensive
MetaCASE and CAME Environment” , University of Jyväskylä, Finland
(1997).

Kra95 Kraut, R. E., L. A. Streeter, “Coordination in Software Development,”
CACM 38(3) (1995) pp.69–81.

Luo96 Luoma, J., M. Somppi, “Concurrency Control in Multi -User MetaEdit+
(Samanaikaisuuden halli nta monen käyttäjän MetaEdit+:ssa),” Master's
Thesis (in Finnish), TKTL, University of Jyväskylä, Finland (1996).

Mar91 Marmolin, H., Y. Sundblad and B. Pehrson, “An Analysis of Design and
Collaboration in a Distributed Environment,” pp. 147–162 in Proceedings
of ECSCW '91 2nd European Conference on CSCW (1991).

Mor90 Moran, T. P., R. J. Anderson, “The Workaday World as a Paradigm for
CSCW Design,” pp. 318–393 in CSCW 90 Proceedings, ACM (1990).

New92 Newman-Wolfe, R. E., M. L. Webb and M. Montes, “ Implicit Locking in
the Ensemble Concurrent Object-Oriented Graphics Editor,” pp. 265–272
in Proceedings of the 1992 Conference on Computer-Supported
Cooperative Work, Jon Turner and Robert Kraut (eds.) (Ed.), ACM Press,
Toronto, Canada (1992).

Rie88 Riegel, Steve, Fred Mellender and Andrew Straw, “ Integration of
Database Management with an Object-Oriented Programming Language,”
pp. 317–322 in Advances in Object-Oriented Database Systems: 2nd
International Workshop on Object-Oriented Database Systems, K. R.
Dittrich (ed.) (Ed.) Vol. Lecture Notes in Computer Science No. 334,
Springer-Verlag, Berlin (1988).

Rup95 Rupnik-Miklic, E., J. Zupancic, “Experiences and expectations with CASE
technology — an example from Slovenia,” Information & Management
28(6) (1995) pp.377–391.

Sel94 Selamat, M. H., C. Y. Choong, A. T. Othman and M. M. Rahim, “Non-
Use Phenomenon of CASE Tools: Malaysian experience,” Information
and Software Technology 36(9) (1994) pp.531–537.

Smo91 Smolander, Kari, Kalle Lyytinen, Veli -Pekka Tahvanainen and Pentti
Marttiin, “MetaEdit — A Flexible Graphical Environment for
Methodology Modelli ng,” pp. 168–193 in Advanced Information Systems
Engineering, Proceedings of the Third International Conference
CAiSE'91, Trondheim, Norway, May 1991, R. Andersen, J. A. Bubenko jr.
and A. Solvberg (Ed.), Springer-Verlag, Berlin (1991).

Sri93 Srinivasan, V., M. J. Carey, “Performance of B+ Tree Concurrency
Algorithms,” VLDB Journal 2(4) (1993) pp.361–406.

Sto93 Stobart, S. C., A. J. van Reeken, G. C. Low, J. J. M. Trienekens, J. O.
Jenkins, J. B. Thompson and D. R. Jeffery, “An Empirical Evaluation of
the Use of CASE Tools,” pp. 81–87 in Proceedings of the 6th
International Workshop on Computer-Aided Software Engineering,
CASE93, Hing-Yan Lee, Thomas F. Reid and Stan Jarzabek (Ed.), IEEE
Computer Society (1993).

Tai97 Taivalsaari, A., S. Vaaraniemi, “TDE: Supporting Geographically
Distributed Software Design with Shared, Collaborative Workspaces,” pp.
389–408 in Proceedings of CAiSE '97, Barcelona, Catalonia, Spain, June
16–20, A. Olivé and J. A. Pastor (Ed.) Vol. 1250, Springer, Berlin (1997).

Ves95 Vessey, I., A. P. Sravanapudi, “CASE tools as collaborative support
technologies,” CACM 38(1) (1995) pp.83–95.

