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Introduction: Bridging the CASE Gap 

Current IS design practice 

Several designers, each with own module; interfaces, reuse, co-ordination 

Methods non-standard, change in use, method introduction often fails 

State of the art in CASE 

CASE tools support a fixed, standard method: too rigid 

Most CASE tools file-based, no true repository:  coarse granularity 

Many single user, some multi-user CASE tools, but low permeability 

Bridging the gap: multi-user metaCASE 

Create, use and modify methods in the same environment 

Repository-based: multiple users, fine granularity, high permeability 

Multiple simultaneous users, both modellers and metamodellers 
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Need for MetaCASE 

New domains benefit from new or adapted methods 

Methods benefit from tool support 

Especially important in domains with electronic implementation 

E.g. document management for organisations 

    Metodi project: Method for document structure analysis with SGML 

E.g. Internet service provider’s information system 

    Brazilian ISP, multiple designers working on IS 

Traditional domains benefit from customisable automation 

Documentation generation to WWW with diagrams, links etc. 

Distributed system design & generation to Java, IDL etc. 

E.g. automating generation from models to final executable 

    German consultant: UML model  Java framework  application 
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Needs for Multi-User CASE Teamware 

Most group design work is asynchronous 

Mirrors familiar pattern of work before computerisation 

Leverages strengths of modularisation, black box approach 

Sharing should be as transparent as possible 

Details of sharing should be available if required 

Low frequency of updates reflecting others’ work 

Sufficient: because of modularisation 

Familiar: designers are used to working with most recent paper version 

Non-distracting: frequent updates on screen would make work restless 

Meaningful unit of work: each transaction represents the implementation of one 

idea or change 
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ArtBASE Object Store for Smalltalk 

Atomic transactions 

Changes only visible to others after commit 

User view of data consistent throughout transaction 

Optimistic & pessimistic concurrency control 

Automatic optimistic concurrency guarantees correctness 

Pessimistic concurrency via locks guarantees work can be committed 

Seamless integration with Smalltalk 

No distinction between object in program and in database 

No separate language for manipulating database objects 

Classes treated as objects: class changes lazily updated to instances 

The price: slow at start-up, but fast after objects cached 
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Automatic Locking Strategies 

Remove burden of locking from user 

Transparent sharing: can concentrate on work not tool 

Guarantees safety of user’s work: not reliant on him locking correctly 

Infer intentions from actions, lock before execute 

Fine granularity allows most actions to attempt to lock 

User can override with shift key to signal he will only read 

Minimal feedback, more on request 

E.g. ‘OK’ button greyed in property dialog, ‘Info’ button shows who has lock 

Menu items greyed, can’t move objects in diagram, status bar shows lock holder 

Don’t grey out individual locked objects: makes diagram confusing 
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Locking Strategy for CASE Teamwork 

Different types of data have different requirements 

Objects, relationships, properties 

Conceptual graphs and their representational diagrams 

Projects, i.e. collections of related graphs 

Metamodels 

No data is ever read-locked 

Read-write conflicts are not dangerous in CASE 

Simply mean you are working on the basis of the latest released version 

Fine granularity of locking 

Lock conceptual graph and representational diagram separately 

Lock objects and their properties separately from graphs 

But lock all properties together: often semantically interrelated 
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Locking collections in CASE 
How can multiple users add elements to same collection? 

‘Simultaneously’, i.e. in overlapping transactions 

Locking the collection prevents others adding for too long 

Traditional answer: B-trees 

Implement collection as tree structure 

Value added acts as key at each branch, says which branch to follow 

Only need to lock lowest branch on add: nothing else changes 

B-tree problems in CASE for collection of graphs 

No good key: only immutable part of graph is its OID, but this is sequentially 

assigned  poorest B-tree performance 

B-trees give good permeability only when large, but graph creation frequency is 

highest at start of project, when collection is tiny 
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Solution: MultiUserColl 
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Locks for Metamodelling 

Significantly different from modelling 

Implementation level: instances update to reflect type changes 

User level: method changes while working may be unsettling 

Organisation level: method represents a standard, strictly controlled 

Analogy with traditional database schema changes 

Rare event, all users logged out, long down-time 

Metamodel change intensity varies over lifecycle 

Metamodel
changes

Model
changes
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Locks for Method Engineering 

Scenario: multiple metamodellers build and test a method 

E.g. consultants, large organisation, method developers, researchers 

Multiple simultaneous schema updaters 

Multiple simultaneous modellers (metamodellers build test models) 

Great difference from traditional ‘schema changes’ 

Clearly, one automatic strategy is not enough for metamodel locks 

Implement several strategies, allow sysadmin to choose 

1. Exclusive: one single metamodeller, no modellers 

2. Single: one single metamodeller, any number of modellers 

3. Project: several metamodellers (one per project), many modellers 

Theoretically possible to lock individual types 

But more permeability than 3. scarcely needed at this stage 
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Evaluation and Comparison 
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MetaEdit+ fares well, even though others are just CASE 
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Conclusions and Further Work 

First multi-user metaCASE environment 

Supports metamodelling alongside modelling 

Supports multiple simultaneous metamodellers 

Repository allows reuse, high permeability, fine granularity 

Fully automatic locking: transparent to users 

MultiUserColl fits CASE-specific requirements for collection data structure 

Need testing with larger numbers of users 

ArtBASE has been tested with 100’s; MetaEdit+ only with 10 so far 

Work begun on ‘light’ MetaEdit+ client via WWW 

Allows read-only access to models & metamodels for many users 

Implemented as a single MetaEdit+ client answering WWW requests 
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