
Multi-User MetaCASE
CASE tool support for co-operative work in IS design

Steven Kelly

Multi-User MetaCASE Slide 1

Introduction: Bridging the CASE Gap

Current IS design practice

Several designers, each with own module; interfaces, reuse, co-ordination

Methods non-standard, change in use, method introduction often fails

State of the art in CASE

CASE tools support a fixed, standard method: too rigid

Most CASE tools file-based, no true repository:  coarse granularity

Many single user, some multi-user CASE tools, but low permeability

Bridging the gap: multi-user metaCASE

Create, use and modify methods in the same environment

Repository-based: multiple users, fine granularity, high permeability

Multiple simultaneous users, both modellers and metamodellers

Multi-User MetaCASE Slide 2

Need for MetaCASE

New domains benefit from new or adapted methods

Methods benefit from tool support

Especially important in domains with electronic implementation

E.g. document management for organisations

 Metodi project: Method for document structure analysis with SGML

E.g. Internet service provider’s information system

 Brazilian ISP, multiple designers working on IS

Traditional domains benefit from customisable automation

Documentation generation to WWW with diagrams, links etc.

Distributed system design & generation to Java, IDL etc.

E.g. automating generation from models to final executable

 German consultant: UML model  Java framework  application

Multi-User MetaCASE Slide 3

Needs for Multi-User CASE Teamware

Most group design work is asynchronous

Mirrors familiar pattern of work before computerisation

Leverages strengths of modularisation, black box approach

Sharing should be as transparent as possible

Details of sharing should be available if required

Low frequency of updates reflecting others’ work

Sufficient: because of modularisation

Familiar: designers are used to working with most recent paper version

Non-distracting: frequent updates on screen would make work restless

Meaningful unit of work: each transaction represents the implementation of one

idea or change

Multi-User MetaCASE Slide 4

ArtBASE Object Store for Smalltalk

Atomic transactions

Changes only visible to others after commit

User view of data consistent throughout transaction

Optimistic & pessimistic concurrency control

Automatic optimistic concurrency guarantees correctness

Pessimistic concurrency via locks guarantees work can be committed

Seamless integration with Smalltalk

No distinction between object in program and in database

No separate language for manipulating database objects

Classes treated as objects: class changes lazily updated to instances

The price: slow at start-up, but fast after objects cached

Multi-User MetaCASE Slide 5

Automatic Locking Strategies

Remove burden of locking from user

Transparent sharing: can concentrate on work not tool

Guarantees safety of user’s work: not reliant on him locking correctly

Infer intentions from actions, lock before execute

Fine granularity allows most actions to attempt to lock

User can override with shift key to signal he will only read

Minimal feedback, more on request

E.g. ‘OK’ button greyed in property dialog, ‘Info’ button shows who has lock

Menu items greyed, can’t move objects in diagram, status bar shows lock holder

Don’t grey out individual locked objects: makes diagram confusing

Multi-User MetaCASE Slide 6

Locking Strategy for CASE Teamwork

Different types of data have different requirements

Objects, relationships, properties

Conceptual graphs and their representational diagrams

Projects, i.e. collections of related graphs

Metamodels

No data is ever read-locked

Read-write conflicts are not dangerous in CASE

Simply mean you are working on the basis of the latest released version

Fine granularity of locking

Lock conceptual graph and representational diagram separately

Lock objects and their properties separately from graphs

But lock all properties together: often semantically interrelated

Multi-User MetaCASE Slide 7

Locking collections in CASE
How can multiple users add elements to same collection?

‘Simultaneously’, i.e. in overlapping transactions

Locking the collection prevents others adding for too long

Traditional answer: B-trees

Implement collection as tree structure

Value added acts as key at each branch, says which branch to follow

Only need to lock lowest branch on add: nothing else changes

B-tree problems in CASE for collection of graphs

No good key: only immutable part of graph is its OID, but this is sequentially

assigned  poorest B-tree performance

B-trees give good permeability only when large, but graph creation frequency is

highest at start of project, when collection is tiny

Multi-User MetaCASE Slide 8

Solution: MultiUserColl

1

2

3

4

5

Insulator

Insulator

Insulator

Insulator

Insulator

chain

nil

nil

nil

Graph A

Graph C

Graph D

Insulator

Insulator

Insulator

Insulator

Insulator

nil

nil

Graph F

nil

nil

MUC

*

1

2

3

4

5

chain

MUC

= persistent object

=

* = locked

 (instance variable)

aggregation

Multi-User MetaCASE Slide 9

Locks for Metamodelling

Significantly different from modelling

Implementation level: instances update to reflect type changes

User level: method changes while working may be unsettling

Organisation level: method represents a standard, strictly controlled

Analogy with traditional database schema changes

Rare event, all users logged out, long down-time

Metamodel change intensity varies over lifecycle

Metamodel
changes

Model
changes

Multi-User MetaCASE Slide 10

Locks for Method Engineering

Scenario: multiple metamodellers build and test a method

E.g. consultants, large organisation, method developers, researchers

Multiple simultaneous schema updaters

Multiple simultaneous modellers (metamodellers build test models)

Great difference from traditional ‘schema changes’

Clearly, one automatic strategy is not enough for metamodel locks

Implement several strategies, allow sysadmin to choose

1. Exclusive: one single metamodeller, no modellers

2. Single: one single metamodeller, any number of modellers

3. Project: several metamodellers (one per project), many modellers

Theoretically possible to lock individual types

But more permeability than 3. scarcely needed at this stage

Multi-User MetaCASE Slide 11

Evaluation and Comparison

0

5

10

15

20

25
D

e
ft

Ic
o
n
ix

S
y
s
te

m

A
rc

h
it
e
c
t

V
is

ib
le

A
n
a
ly

s
t

M
e
ta

E
d
it
+

F
u

n
c
ti

o
n

s
 i
m

p
le

m
e
n

te
d Cooperation

Monitoring

Information
sharing

Control

MetaEdit+ fares well, even though others are just CASE

Multi-User MetaCASE Slide 12

Conclusions and Further Work

First multi-user metaCASE environment

Supports metamodelling alongside modelling

Supports multiple simultaneous metamodellers

Repository allows reuse, high permeability, fine granularity

Fully automatic locking: transparent to users

MultiUserColl fits CASE-specific requirements for collection data structure

Need testing with larger numbers of users

ArtBASE has been tested with 100’s; MetaEdit+ only with 10 so far

Work begun on ‘light’ MetaEdit+ client via WWW

Allows read-only access to models & metamodels for many users

Implemented as a single MetaEdit+ client answering WWW requests

	Introduction: Bridging the CASE Gap
	Current IS design practice
	Several designers, each with own module; interfaces, reuse, co-ordination
	Methods non-standard, change in use, method introduction often fails

	State of the art in CASE
	CASE tools support a fixed, standard method: too rigid
	Most CASE tools file-based, no true repository: (coarse granularity
	Many single user, some multi-user CASE tools, but low permeability

	Bridging the gap: multi-user metaCASE
	Create, use and modify methods in the same environment
	Repository-based: multiple users, fine granularity, high permeability
	Multiple simultaneous users, both modellers and metamodellers

	Need for MetaCASE
	New domains benefit from new or adapted methods
	Methods benefit from tool support
	Especially important in domains with electronic implementation
	E.g. document management for organisations
	Metodi project: Method for document structure analysis with SGML
	E.g. Internet service provider’s information system
	Brazilian ISP, multiple designers working on IS

	Traditional domains benefit from customisable automation
	Documentation generation to WWW with diagrams, links etc.
	Distributed system design & generation to Java, IDL etc.
	E.g. automating generation from models to final executable
	German consultant: UML model (Java framework (application

	Needs for Multi-User CASE Teamware
	Most group design work is asynchronous
	Mirrors familiar pattern of work before computerisation
	Leverages strengths of modularisation, black box approach

	Sharing should be as transparent as possible
	Details of sharing should be available if required

	Low frequency of updates reflecting others’ work
	Sufficient: because of modularisation
	Familiar: designers are used to working with most recent paper version
	Non-distracting: frequent updates on screen would make work restless
	Meaningful unit of work: each transaction represents the implementation of one idea or change

	ArtBASE Object Store for Smalltalk
	Atomic transactions
	Changes only visible to others after commit
	User view of data consistent throughout transaction

	Optimistic & pessimistic concurrency control
	Automatic optimistic concurrency guarantees correctness
	Pessimistic concurrency via locks guarantees work can be committed

	Seamless integration with Smalltalk
	No distinction between object in program and in database
	No separate language for manipulating database objects
	Classes treated as objects: class changes lazily updated to instances

	The price: slow at start-up, but fast after objects cached

	Automatic Locking Strategies
	Remove burden of locking from user
	Transparent sharing: can concentrate on work not tool
	Guarantees safety of user’s work: not reliant on him locking correctly

	Infer intentions from actions, lock before execute
	Fine granularity allows most actions to attempt to lock
	User can override with shift key to signal he will only read

	Minimal feedback, more on request
	E.g. ‘OK’ button greyed in property dialog, ‘Info’ button shows who has lock
	Menu items greyed, can’t move objects in diagram, status bar shows lock holder
	Don’t grey out individual locked objects: makes diagram confusing

	Locking Strategy for CASE Teamwork
	Different types of data have different requirements
	Objects, relationships, properties
	Conceptual graphs and their representational diagrams
	Projects, i.e. collections of related graphs
	Metamodels

	No data is ever read-locked
	Read-write conflicts are not dangerous in CASE
	Simply mean you are working on the basis of the latest released version

	Fine granularity of locking
	Lock conceptual graph and representational diagram separately
	Lock objects and their properties separately from graphs
	But lock all properties together: often semantically interrelated

	Locking collections in CASE
	How can multiple users add elements to same collection?
	‘Simultaneously’, i.e. in overlapping transactions
	Locking the collection prevents others adding for too long

	Traditional answer: B-trees
	Implement collection as tree structure
	Value added acts as key at each branch, says which branch to follow
	Only need to lock lowest branch on add: nothing else changes

	B-tree problems in CASE for collection of graphs
	No good key: only immutable part of graph is its OID, but this is sequentially assigned (poorest B-tree performance
	B-trees give good permeability only when large, but graph creation frequency is highest at start of project, when collection is tiny

	Solution: MultiUserColl
	Locks for Metamodelling
	Significantly different from modelling
	Implementation level: instances update to reflect type changes
	User level: method changes while working may be unsettling
	Organisation level: method represents a standard, strictly controlled

	Analogy with traditional database schema changes
	Rare event, all users logged out, long down-time

	Metamodel change intensity varies over lifecycle

	Locks for Method Engineering
	Scenario: multiple metamodellers build and test a method
	E.g. consultants, large organisation, method developers, researchers
	Multiple simultaneous schema updaters
	Multiple simultaneous modellers (metamodellers build test models)

	Great difference from traditional ‘schema changes’
	Clearly, one automatic strategy is not enough for metamodel locks

	Implement several strategies, allow sysadmin to choose
	1. Exclusive: one single metamodeller, no modellers
	2. Single: one single metamodeller, any number of modellers
	3. Project: several metamodellers (one per project), many modellers

	Theoretically possible to lock individual types
	But more permeability than 3. scarcely needed at this stage

	Evaluation and Comparison
	MetaEdit+ fares well, even though others are just CASE

	Conclusions and Further Work
	First multi-user metaCASE environment
	Supports metamodelling alongside modelling
	Supports multiple simultaneous metamodellers

	Repository allows reuse, high permeability, fine granularity
	Fully automatic locking: transparent to users
	MultiUserColl fits CASE-specific requirements for collection data structure

	Need testing with larger numbers of users
	ArtBASE has been tested with 100’s; MetaEdit+ only with 10 so far

	Work begun on ‘light’ MetaEdit+ client via WWW
	Allows read-only access to models & metamodels for many users
	Implemented as a single MetaEdit+ client answering WWW requests

