
BigMDE, 21 July 2017

Steven Kelly, MetaCase

Collaborative Modeling
with Version Control

v2

v1

v3

merge

Clone
merge after the fact

Share
continuous integration

vs.

? ?

Shared
repository

Working
copy

Working
copy

 versions vs. multi-user
 flat files vs. database
 ASCII vs. objects
 text vs. graphics

server

1

2

N

…

The challenge:
mix oil & water

 versions ↔.multi-user
 flat files ↔.database
 ASCII ↔.objects
 text ↔.graphics

Four purposes for versioning

• Understanding what’s been done
– Diff, version comments

• Archive and backup

• Branching
– Parallel variants

– Releases

• Collaboration

• New tools

• VCS integration

•
– DSML

• Multi-user

Changes and Versions tools

 Automatic trace of model changes

 See changes graphically
directly in your models

 View changes as a tree using your
language's structure and symbols,
not XML

 Compare changes as a textual diff
with live links to models

 Filters (your changes/all changes,
data/representation)

Three ways to view changes

Versioning with external VCSs

 Simple setup and use

 Automated background execution of
versioning commands

 Maintain same model in several places,
syncing with GitHub etc.

 Version and diff your language and
generators along with models

 Git, SVN predefined

– extend with your own

Version Control Integration (e.g. Git)

Shared repo, shared working dir?

server

C:\git

.git

HEAD

remote VCS

Shared repo, working dir per user

server

C:\git

.git

HEAD

remote VCS

C:\git

.git

HEAD

Persuading VCSs to leave well alone

 MetaEdit+ has already integrated all users’ work

 However, local working VCS info may be behind remote

– Another user may have versioned after we last versioned

– VCS will try to merge, reverting files to previous user’s 

 Need to get VCS up to date, without changing files

– Sync with remote

– Update local to remote HEAD

– Accept exactly these files as next version

 Order of these and actually writing files differs per VCS:

– Git: write files, remote update, reset --soft, add -a, commit, push

– SVN: svn update, write files, TortoiseSVN commit

Conclusion

 Extended a multi-user modeling tool with versioning

 New native tools for diff & working with versions

– Three different integrated UIs: tree, graphical, (hyper)text

 Built integration with external VCSs

– Easy, consistent UI across all VCSs, hides complexity of Git

– Order of magnitude faster & simpler than best in Eclipse

– User-extendable to new VCSs

 Works with multi-user repository: best of both worlds

– No merges, no lock-outs

 Further work: for rare offline cases, add merging import

Thank you!

