
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Collaborative Modeling and Metamodeling
in the Cloud with Versioning

Steven Kelly

MetaCase

Jyväskylä, Finland

stevek@metacase.com

ORCID: 0000-0003-0931-157X

Juha-Pekka Tolvanen

MetaCase

Jyväskylä, Finland

jpt@metacase.com

ORCID: 0000-0002-6409-5972

Abstract—This tutorial investigates and demonstrates proven

solutions for industrial scale collaborative modeling, maintaining

a version history in standard tools as the models and modeling

language evolve on the fly. It will show how to achieve smooth

collaboration between multiple simultaneous modelers. The aim is

low effort and low ceremony for modelers, while maintaining the

use and benefits of version control systems familiar from coding.

Alongside the models, the modeling language can also be evolved

collaboratively in a similar way, with minimal work for

metamodelers and minimal impact on modelers. The evolution of

the models and metamodels will be recorded in the version history,

with participants able to see their own changes and document

them in version comments. Participants will gain practical

experience and understanding by taking part in the modeling and

metamodeling using the provided no-install desktop or browser-

based tools — or their own tools, prepared ahead of time with the

materials. Explanations, discussions and tasks will help all

participants think through the hows and whys of the collaboration

mechanisms.

Keywords—collaboration, modeling, metamodeling, multi-user,

versioning, cloud, domain-specific modeling, co-evolution

I. TUTORIAL INFORMATION

A. Short bios

Dr. Steven Kelly is the CTO of MetaCase and co-founder of
the DSM Forum. He has over thirty years of experience of
consulting and building tools for Domain-Specific Modeling.
Steven is the architect and lead developer of MetaEdit+,
MetaCase’s domain-specific modeling tool. He is co-author of a
book on Domain-Specific Modeling and has published over 70
articles in various software development journals and
conferences. Steven has a Ph.D. in computer science from the
University of Jyväskylä and a Master’s degree from Cambridge.

Dr. Juha-Pekka Tolvanen is the CEO of MetaCase and co-
founder of the DSM Forum. He has been involved in model-
driven development and tools, notably metamodeling and code
generators, since 1991. He has acted as a consultant world-wide
for modeling language development, authored a book on
Domain-Specific Modeling, and written over 70 articles for
various software development magazines and conferences.
Juha-Pekka holds a Ph.D. in computer science and he is an
adjunct professor (docent on software development methods) at
the University of Jyväskylä.

B. Proposed length

1.5 hours

C. Level of the tutorial

Beginner to Advanced

D. Target audience

This tutorial is intended for anyone interested in how to
integrate the work of multiple modelers working on the same set
of models. The approach shown is independent of the modeling
language, programming language and version control system.

There are no prerequisites beyond average modeling skills.

II. TUTORIAL DESCRIPTION

This tutorial investigates and demonstrates proven solutions
for industrial scale collaborative modeling, maintaining a
version history in standard tools as the models and modeling
language evolve on the fly. It will show how to achieve smooth
collaboration between multiple simultaneous modelers. The aim
is low effort and low ceremony for modelers, while maintaining
the use and benefits of version control systems familiar from
coding. Alongside the models, the modeling language can also
be evolved collaboratively in a similar way, with minimal work
for metamodelers and minimal impact on modelers. The
evolution of the models and metamodels will be recorded in the
version history, with participants able to see their own changes
and document them in version comments.

Participants will gain practical experience and understanding
by taking part in the modeling and metamodeling using the
provided no-install desktop or browser-based tools — or their
own tools, prepared ahead of time with the materials.
Explanations, discussions and tasks will help all participants
think through the how and why of the collaboration
mechanisms.

A. Tutorial methods

Most of the tutorial will be practical, with additional slides
and discussion based on participant interest.

In the practical parts of the tutorial, participants will
collaborate as metamodelers and modelers in various roles that
we have commonly encountered in industrial projects. We begin
with an existing metamodel and small set of models. The

metamodel and models are extended and updated by the
participants in parallel, with the work of most touching all
models — the hardest test for collaboration tooling. The
domain-specific modeling language we use is based on familiar
concepts of sensors, actions and states, targeting an Internet of
Things consumer device.

The level of the models and their language is such that
participants will be able to understand them and work with them
quickly, without needing to learn a new domain. Similarly, the
participants will not need to install modeling tools, but will be
able to work with the graphical models and the metamodels in
no-install desktop or browser-based editors in the cloud.

III. MODELING CASE AND OUTLINE

A. Modeling language problem domain and context

“The year is 2030. 15 years earlier, Juha-Pekka made a
domain-specific modeling language for the Internet of Things,
the pinnacle of cool tech back then. The language allowed
modelers to create programs for a Thingsee One [1], a device
with a number of environmental sensors and the ability to send
various kinds of alerts. Using the language, he built some
models for a boat he shared on the South-West coast of Finland
back then. Now, he is planning for his well-earned retirement —
on the tropical Canary Islands (he can dream!). He wants to
expand the models and update them for the rather different
climate there, and he has enlisted your help.”

B. Modeling language used

The modeling support provided includes two languages,
with Thingsee Purpose being our focus here, and Thingsee
Profile a simple collection of Purpose models to run together on
a device.

The Thingsee Purpose modeling language is based on the
sensors and services of an Internet of Things device, the
Thingsee One. The language offers the modeler various
environmental sensors (Accelerator, Timer, Geofence,
Location, Speed, Temperature, Humidity, Pressure, Luminance)
and actions to interact with the world via services (cloud,
mobile, SMS). There are also some sensors to monitor the status
of the device itself, such as its battery level and charging status.
The sensors and actions specified are connected together, and
which are activated at any given point is narrowed down by
timers and state-based logic. A transition in one Thingsee
Purpose can also shift the application into a state in another
Thingsee Purpose. Rules in the language help guide the modeler
in creating applications, as well as offering checks to spot
models that would require operating the device in unsafe
situations (e.g. too hot, too great a G-force).

A code generator produces the JSON specification code that
can be uploaded to the Thingsee device and executed by the
fixed ‘engine’ code there.

An example of a simple Thingsee Purpose model to detect a
car speeding is shown in Fig. 1. The system starts in state ‘Below
limit’ (with the heavy outline), and if the speed is >120 km/h
(shown under the speedometer on the right) for 15 seconds, an
SMS text message and cloud notification “Kid is speeding” will
be sent, and the system will move to state ‘Above limit’. When

the speed is <117 km/h for 10 seconds, the system returns to the
‘Below limit’ state.

A larger Thingsee Purpose model for a theft alarm and
tracker is shown in a MetaEdit+ [2] Diagram Editor in Fig. 2.

C. Collaborative needs in the case: team roles, views, etc.

Modeling by a team can be handled in many different ways.
At one extreme, the division of tasks can be primarily to work
around a chosen tool’s shortcomings: e.g. modularizing the
models so that each model file is only worked on by one person.
Where that modularization also follows a natural division of
knowledge and skills, that may indeed be a good approach. At
the other extreme, each person may work across many models,
adding their own particular knowledge or skill to each model.
This latter approach generally puts the most strain on tool
collaboration facilities, and thus we choose it here as our acid
test. If a tool can cope with this, it will have no problem in
situations where modularization and division of labor help keep
users from treading on each other’s toes even without tool help.

Where work on models is divided according to skills, we
have seen several common patterns over the years. The most

Fig. 1 Thingsee Purpose model to send warning when speeding

Fig. 2 Thingsee Purpose model for a theft alarm and tracker.

common differentiator is metamodelers and modelers: although
the metamodeler may also model, most modelers will not
metamodel. Another common case is to have a group of
modelers responsible for initial models, at the level an end-user
could understand, and a second group of modelers who complete
those models with more technical details. In many companies
making products with an end-user interface, the first group
would earlier have created their specifications with Word or
PowerPoint, whereas the second group were programmers who
implemented the specifications. A third case is a group who
bring to bear some specialist knowledge or skill on individual
values in models, without affecting the structure or behavior:
e.g. language specialists who check text for display to users or
provide translations. A fourth group that we have not seen, but
have often found wanting, is people who are able to lay out
models in a readable fashion. (For some reason, a non-trivial
percentage of people who have good conceptual modeling skills
are lacking in the visual and communication skills needed here,
and their models could be made more useful for others by
somebody neatening them up and making them visually clearer.)

In this case, we will have an example of each of the bolded
categories above, giving us five roles: Metamodeler, Model
Creator, Technical Modeler, Climate Specialist, and Layout
Expert. At the start of the case there will be the metamodel and
an existing set of models. The Metamodeler will update the
metamodel, affecting all models, and the Technical Modeler,
Climate Specialist and Layout Expert will all be working
simultaneously on all the models. The Model Creator’s work
will depend on the Metamodeler’s work, and the others will also
apply their skills to these new models. The Climate Specialist
will use their intimate knowledge of weather patterns in South-
West Finland and the Canary Islands — or Google! — to update
the temperatures, speeds, accelerations caused by stronger seas
etc.

Depending on time and numbers of participants, more than
one participant could play each role, or the participants could be
split into groups and the material and roles duplicated for each
group. The roles can be allocated according to participant
experience level and interest. The task list for each role has
elements that could be omitted if necessary, and extra tasks are
available for users of any role to add. The details of the tasks and
allocation will be adjusted to suit the number of participants and
ensure a useful learning experience: enough material to work on,
but also a small enough set that conflicts between simultaneous
users would become apparent if the tool did not enable
collaboration sufficiently.

IV. TOOL

MetaEdit+ [2] (metacase.com/products.html) is a language
workbench and modelling tool offering strong multi-user
support [3]–[4] and version control integration with no need for
manual diff and merge [5]. It supports multiple simultaneous
modelling languages, multiple representations of the same
model as matrices, tables and text as well as diagrams — which
go beyond bitmaps or boxes to offer dynamic graphical
languages with real-time synchronous feedback in symbols [6].
It has a particular focus on domain-specific modelling with full
code generation [7] and ease of language creation and evolution
[8]–[9]. As well as being installed as a desktop application it can

also be used from the cloud, accessed via the browser or as a
desktop-integrated remote application with no local installation
needed. The cloud installation will be provided for use in this
tutorial.

Participants experienced with their own tool that is suitable
for these tasks may also use that tool, if they prepare it in
advance. The materials (language definition, models and tasks)
will be made available in advance for such tools. Experience
with collaboration, evolution and versioning with various tools
will of course be most welcome, leading to fruitful discussions.

V. NOVELTY OF THE TUTORIAL

Portions of this tutorial were used successfully as part of the
MetaEdit+ hands-on case study in the HoWCoM workshop at
Models 2021. The focus there was on a short demonstration of
multiple geographically distanced collaborators. Here we can
expand to focus more on the how and why of the collaboration
mechanisms, and add the integration with version control
systems.

VI. REQUIRED INFRASTRUCTURE

A large projector screen would be useful to enable
participants to see more than one user’s display at once. Two
screens could also work.

Participants will need Wi-Fi with reasonable speed and
reliability for a remote desktop connection to the cloud server
(peaking at 1 Mbps per participant and several Mbps for the sum
over participants).

REFERENCES

[1] Haltian, Thingsee One IoT device, 2015. [Online]. Available:
https://haltian.com/reference/thingsee-one-iot-device/

[2] S. Kelly, K. Lyytinen, and M. Rossi, “MetaEdit+: A fully configurable
multi-user and multi-tool CASE and CAME environment,” in
International Conference on Advanced Information Systems Engineering.
Springer, 1996, pp. 1–21.

[3] S. Kelly, “Application of repository technology and concepts to a
metaCASE environment,” in Towards a comprehensive metaCASE and
CAME environment: conceptual, architectural, functional and usability
advances in MetaEdit+. University of Jyvaskyla, 1997, ch. 5.

[4] S. Kelly, “CASE tool support for co-operative work in information system
design,” in Information Systems in the WWW Environment, IFIP
TC8/WG8.1 Working Conference on Information Systems in the WWW
Environment, 15-17 July 1998, Beijing, China, ser. IFIP Conference
Proceedings, C. Rolland, Y. Chen, and M. Fang, Eds., vol. 115. Chapman
& Hall, 1998, pp. 49–69.

[5] S. Kelly, “Collaborative modelling with version control,” in Software
Technologies: Applications and Foundations, M. Seidl and S. Zschaler,
Eds. Cham: Springer International Publishing, 2018, pp. 20–29.

[6] S. Kelly and J.-P. Tolvanen, “Automated annotations in domain-specific
models: Analysis of 23 cases,” in Proceedings of FPVM 2021: 1st
International Workshop on Foundations and Practice of Visual Modeling,
A. Di Salle, A. Pierantonio, and J.-P. Tolvanen, Eds., 2021.

[7] S. Kelly and J.-P. Tolvanen, Domain-specific modeling: enabling full
code generation. John Wiley & Sons, 2008.

[8] J.-P. Tolvanen and S. Kelly, “Effort used to create domain-specific
modeling languages,” in Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, 2018, pp. 235–244.

[9] J.-P. Tolvanen and S. Kelly, “Applying domain-specific languages in
evolving product lines,” in Proceedings of the 23rd International Systems
and Software Product Line Conference - Volume B, ser. SPLC ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 40–41.

https://docs.google.com/spreadsheets/d/e/2PACX-1vRyafz9xYHekPEC4rw-yXYLE2CWTgRRJ4ctjT3HFX13n2OiBcHmisMgaw0U8FzxBXjXs6W80MvJoaox/pubhtml?gid=1455341607&single=true
https://www.metacase.com/products.html
https://docs.google.com/document/d/1XXdHRFIky4tAcK4DbJzw7jQvr97w5xiu0QhHsxbScLE/edit?usp=sharing

© 2023 MetaCase 1

Steven Kelly, Juha-Pekka Tolvanen

stevek | jpt @metacase.com

Collaborative
Modeling and Metamodeling
in the Cloud with Versioning

© 2023 MetaCase 2

Collaborative (meta-)Modeling and
Versioning of Models and Languages

server
1

2

N
…

edit models

modify metamodel

update details

lay out models

new models

…
…

v2

v1

v3

merge

Clone
merge after the fact

Share
continuous integration

vs.

? ?

Shared
repository

Working
copy

Working
copy

© 2023 MetaCase 4

◼ Mature, commercial, supported Language Workbench

◼ Collaborative modeling support

– Several developers

– Multiple models

– Multiple languages

– Tracks history & changes

– Integrated with VCSs

◼ Collaborative
language engineering

– Updates existing models

– Integrates with VCSs

© 2023 MetaCase 5

Compare changes between versions

Collaboration at the object level

◼ Repository-based: users work in parallel on same data
– No need to merge

– Models and metamodels can be edited simultaneously

◼ Locks ensure no conflicts
– Fine granularity, so can work closely without lockout

◼ Low ceremony: locking and unlocking is automatic
– Users can focus on work, not tool

◼ Design transactions: minutes to hours
– Commit a coherent set of changes together

• Releasing half-finished/inconsistent data would confuse others

– See a consistent version of repository during transaction
• Avoid being distracted by others’ changes appearing live

ME+ server
thick
client

thick
client

RSL: Remote Shared License

◼ IT departments want to avoid installing software

◼ Want to allow users to work from anywhere

◼ Graphical modelling has high performance reqs at client

◼ Large repositories are slow to move over a network

– Particularly with high latency over VPNs + load as needed

◼ Put MetaEdit+ server and client on one Windows Server

◼ Multiple remote desktop connections from users

server

Changes and Versions tools

◼ Automatic trace of model changes

◼ See changes graphically
directly in your models

◼ View changes as a tree using your
language's structure and symbols,
not XML

◼ Compare changes as a textual diff
with live links to models

◼ Filters (your changes/all changes,
data/representation)

Versioning with external VCSs

◼ Simple setup and use

◼ Automated background execution
of versioning commands

◼ Maintain same model in several
places, syncing with GitHub etc.

◼ Version and diff your language
and generators along with models

◼ Git, SVN predefined

– extend with your own

Task overview by role (in parallel)

Metamodeler Layout Expert Climate Specialist Technical Modeler Model Creator

Add new
property slot

Rearrange
diagrams:

- Sensors left
- Actions right

Update temperatures
- warmer, stabler
Update velocities

- rougher seas

Wait for
metamodeler

Create new
models:

- storm season
- tourist season

Add/update rules
Update symbols

Enter values for
new property

© 2023 MetaCase 11

Thank you!

Questions?
Experiences?
Arguments?

	Collaborative Modeling and Metamodeling in the Cloud with Versioning
	Collaborative modeling and metamodeling in the cloud with versioning

