
www.embedded-world.eu

Designing Safety In

by Extending System Modeling Languages

Juha-Pekka Tolvanen

MetaCase

Jyväskylä, Finland

jpt@metacase.com

Steven Kelly

MetaCase

Jyväskylä, Finland

stevek@metacase.com

Abstract—To create safe systems, systems development should

follow applicable safety standards. Nowadays much systems

development uses modeling languages, yet most of these languages

do not recognize safety concerns adequately. We present an

approach in which relevant safety aspects are treated as first-class

citizens: The modeling language includes concepts specifically for

safety, in addition to those for other aspects of system design. In

this paper we present how an automotive safety standard, namely

ISO 26262 for functional safety, has been added to a system

modeling language, extending its metamodel and the related tool

support to enable natural modeling of safety aspects, collaborative

development and safety reporting along failure analysis. The

extended safety modeling support shows the key benefits of

addressing safety together with system design: traceability

between system design and safety design enables collaboration

between system engineers and safety engineers, and error-prone,

time-consuming manual phases are replaced with automated

design transformation and analysis.

Keywords—safety; domain-specific language; ISO 26262;

Model Based Development

I. INTRODUCTION

To create safe systems, systems development should follow
applicable safety standards such as ISO 26262 [4] or SOTIF/
ISO 21448 [5]. Nowadays much systems development uses
modeling languages, yet most of these languages do not
recognize safety concerns adequately or guide towards design of
safe systems (e.g. SysML [10]). We present an approach in
which relevant safety aspects are treated as first-class citizens:
The modeling language includes concepts specifically for safety
– and linked with those dealing with other aspects of system
design. Modeling of safety systems is thus not only about system
blocks, signals and client/server connections, but also about
hazards, hazardous events and safety goals. This makes safety
aspects concrete and visible to the whole team. As the safety
aspects are linked with the rest of the system development
language, the approach also enables collaboration among system
engineers and safety engineers as well as provides the basis for
the necessary traceability. The traceability ranges from the
logical dependencies among requirements, to the satisfaction
mappings from requirements to system designs, and to the
evaluation mappings from requirements to verification and

validation cases. Capturing safety information in models lets us
use it in tool support and automation, e.g. creation of Fault Tree
Analysis (FTA), Failure Models and Effects Analyses (FMEA),
and safety-related documentation ([1][8]).

In this paper we present how safety aspects can be added to
a system modeling language, looking at both the concepts and
the process of adding them. To demonstrate the approach, we
take a concrete example from automotive safety, namely the ISO
26262 functional safety standard [4], and add it to a system
modeling language. The same process can be applied for other
safety standards: we have also applied it to ISO 13849-1, safety
for machinery.

The process starts by extending a metamodel of a modeling
language with safety concepts, along with their rules for things
like naming conventions and connections. This is followed by
adding visual notations to represent the new safety modeling
concepts. Having a notation allows the language to be tested
with reference examples and demonstrated to language users.
Automated tool support is also added for verifying model
correctness and offering traceability of safety design with the
rest of system design. Generators are made to read the models
and provide a link to existing analysis and simulation tools,
enabling automatic creation of FTA, FMEA, and safety-related
documentation.

Most importantly, extending the language is an incremental
process, in which the evolving modeling support can be tested
and validated with language users by using it to specify actual
systems. In other words, the process from adding a language
concept in the metamodel to its use is seamless – it takes just a
few minutes to add a safety concept to the metamodel along with
its notation and rules, and it is instantly available to users for
them to provide feedback for further language definition. We
conclude the paper by showing the benefits of the safety
modeling support with practical examples: traceability between
system design and safety design enables collaboration between
system engineers and safety engineers, and error-prone, time-
consuming manual phases are replaced with automated design
transformation and analysis.

II. LANGUAGE DESIGN

Today, companies in many fields are required to follow
safety standards, such as ISO 26262 on functional safety in the
automotive industry. These standards typically define a relevant
vocabulary and concepts along with rules and processes for
safety design. Using ISO 26262 as an example, some of the key
concepts are:

• A Safety Goal is a top-level safety requirement that is
assigned to a system, with the purpose of reducing the
risk of one or more hazardous events to a tolerable level.

• A Hazardous Event is a relevant combination of a
vehicle-level hazard and an operational situation of the
vehicle with potential to lead to an accident.

• A Hazard represents a condition or state in the system
that may contribute to accidents.

• A Safety concept defines means to achieve the safety
goal.

• An Item is a particular system product that identifies the
scope of system information and its top-level system
functional requirements.

Along with these concepts there are also rules and process
guidelines to ensure that all aspects of safety are considered. For
example, for each Safety Goal one or more safe states should be
defined: the Safety Goal must address one or more Hazardous
Events and it must be linked to one or more Requirements.
System engineers and safety engineers need to master these
concepts and all their related constraints to perform safety design
and document it accordingly (for acceptance). Unfortunately,
having a generic and universal set of safety concepts is not
possible: safety standards are not compatible, have different
meanings and even follow opposite values (e.g. as for safety
integrity level defining risk-reduction levels in different safety
standards). Many safety standards are tailored to be specific to

the industry, with different standards for machinery, railway,
industrial processes, automotive etc.

A. Abstract syntax

Adding safety to a modeling language starts by defining the
relevant safety concepts as a metamodel: Fig. 1 shows the
relevant concepts of ISO 26262 defined for Dependability
modeling. Top left is the definition of Safety Goal along with its
properties, such as its Safety level and its SafeState (a Mode
object), and connections to other concepts like Requirements
and the Hazardous Events it addresses.

We need to integrate these concepts with our existing system
modeling language. In our case, we extended EAST-ADL, a
system modeling language supporting aspects relevant for
automotive systems, like product lines with variants and
automotive software architecture AUTOSAR [1]. The
Requirement concept shown in the ISO 26262 metamodel is also
an existing modeling concept of EAST-ADL and we reuse it
here. The Item concept in ISO 26262 has a property ‘Vehicle
features’ referring to a collection of Features, and EAST-ADL
also defines a concept of Feature with similar semantics, so we
link to that.

In our language extension work we used MetaEdit+ [6], as it
already provides metamodels of EAST-ADL (and UML, BPMN
etc.) that can be directly modified and extended, without
breaking existing models. In addition to Dependability as in Fig.
1, we also defined a metamodel for error modeling that allows
to specify possible incorrect behaviors of a system in its
operation (e.g. component errors and their propagations). An
example of error modeling is shown in Fig. 4.

B. Concrete syntax

Each modeling concept, such as elements, their connections
or individual properties, has a visual representation so that
humans can create, read and validate the models. For this

Fig. 1. Safety concepts of ISO 26262 as metamodel (partial)

www.embedded-world.eu

purpose, we add notational symbols for them. Fig. 2 illustrates a
notation for Safety Goal defined in the Symbol Editor of
MetaEdit+. The symbol may also have conditional or dynamic
parts for showing values, calculating them, or providing
guidance for language user (e.g. that no Safe State is yet defined
for a Safety Goal). Using different visualizations for different
elements of safety (see e.g. Fig. 3 and Fig. 4) makes models
more readable – as opposed to having different kinds of things
all represented by the same kind of rectangular block [7].

C. Rules and constraints

The metamodel may also include constraints and rules that
guide safety engineers. For example, to assist completeness the
language checks if a Safety Goal is not related to any
Requirements or is not derived from any Hazardous Event. Or,
as a consistency check, Hazardous Events must have unique
names and their ASIL classification only allows legal values (i.e.
those in the standard).

D. Generators

A key part of MBSE’s contribution to Systems Engineering
is the use of automation to increase productivity and reduce
time-consuming and error-prone tasks. We defined several
generators to assist engineering, including:

• Create initial safety models directly from system models.
Since both hardware specification and functional
specification can then be utilized, safety engineers can
get started more easily and ensure that safety designs are
related to the planned system. (Compare this to defining
the architecture again separately for the purpose of safety
design – and keeping it in sync.)

• Traceability reports to assist collaboration among system
engineers and safety engineers. MetaEdit+ allows
collaborative modeling and versioning of system models
and safety models, and the traceability reports provide
dedicated views for engineers. Such traceability data is
also needed for reporting safety work.

• Produce data for analysis tools, like performing FTA and
FMEA analysis. This makes analysis easier with fast
feedback loops when the system design is changed.

• Safety design reporting – as required by certification or
company specific needs.

E. Language definition process

The language was implemented incrementally together with
automotive engineers in language definition projects.
Extensions to it have been made by companies internally (e.g.
[8]) or together with external consultants. Experiences from
industrial use of MetaEdit+ have shown that it takes on average
two weeks to create specific modeling support for company
specific needs (for various cases, see [9]).

III. RESULTS

The created modeling support has been applied by OEMs
and suppliers for various kind of systems such as motor control
and ADAS systems. We illustrate its usage via safety design of
Intelligent Speed Adaptation (ISA), a driving assistance system
designed to help the driver to better comply with speed limits
(for a detailed description of this system, see [2]). Fig. 3
illustrates the results of hazard analysis related to ISA providing
a wrong speed limit: For this case two Hazardous Events are
defined: one related to driving on a dual carriageway and another
on a rural road. For both events Severity, Exposure,
Controllability and ASIL values are defined as in ISO 26262.
The dependability model also defined the safety goal that
reduces the ASIL level to an acceptable level (QM) with
Requirement #14 stating that speed limit changes must be
acknowledged by the driver. The concrete syntax of safety goal
defined in Fig. 2 is illustrated in use at modeling time in bottom
left of Fig. 3.

These dependability models are integrated with the rest of
the designs, as here with Requirement #14 and Item to Vehicle
feature called Intelligent Speed Adaptation. This feature is part
of the vehicle feature model specifying all possible features that
a vehicle in a product line may have. Being linked to features
thus allows to trace implications of safety related features to all

Fig. 2. Notation for Safety Goal

possible vehicles they are applied in, rather than just one
particular vehicle model and its configuration.

The same applies also for requirements: Engineers can trace
from all Requirements to see if they are used to meet Safety

Goals, and produce documentation such as reporting Safety
Goals together with related Requirements (as done in [8]). They
can also collaborate and version the specifications together [6].
For example, suggested changes based on safety can be traced
back automatically to related system design to be changed based

Fig 3. Dependability model specifying safety

Fig. 4. Error model for ISA and its VehicleDistance component along with related FTA

www.embedded-world.eu

on safety analysis. This facilitates feedback and change
iterations during development of safe systems.

System designs are also applied as a basis for error modeling.
The left part of Fig. 4 shows the error model of the ISA system
and the error logic of one of its components: omission of Vehicle
distance from the system component can occur if it does not get
data from the wheel sensors or the component has an internal
error. From such error models automated FTA and FMEA can
be performed as shown on the right side of Fig. 4: a fragment of
a fault tree as presented by the HiP-HOPS tool [3]. For any
system of a realistic size, the automated analysis quickly
becomes an invaluable tool. Error models can be similarly
translated to other FTA/FMEA tools and, depending on the tools
used, the analysis can be further extended by providing
information on failure rates and repair rates.

IV. CONCLUSIONS

Dedicated and precise support for safety standards can be
achieved by extending a system modeling language to support
them. This language-driven approach enables collaboration
between system engineering and safety engineering, improving
productivity and quality as safety work – dependability and error
models – can be linked with the wider system. This also removes
error-prone tasks and steps such as manually creating safety
models, keeping them in sync with the system design, or
performing FTA and FMEA analysis manually.

We have also created modeling support for other standards
(e.g. ISO 13849-1) and analysis tools. The same principles of
language extension (metamodel, constraints, notation,
generators) were applied similarly with just the implementation
varying: e.g. generators target different analysis tools and their

formats, or models include different safety concepts (e.g.
'SafetyMeasure') and provide support for company specific
reporting. Creating such modeling support with editors and links
to analysis tools usually takes a few man-weeks with MetaEdit+.

REFERENCES

[1] H. Blom, D. Chen, K. Kaijser, H. Lönn, Y. Papadopoulos, M. Reiser, R.T.
Kolagari, S. Tucci, “EAST-ADL: An Architecture Description Language
for Automotive Software-intensive Systems in the Light of Recent use
and Research”. In: International Journal of System Dynamics
Applications, 2016

[2] J. Ehrlich, J.-P. Tolvanen, “Modelling with EAST-ADL: Intelligent Speed
Adaptation (ISA) as case study”, FISITA 2016 World Automotive
Congress, Busan, Korea, Sept. 26-30, 2016.

[3] HiP-HOPS [Online]. Available at: http://hip-hops.co.uk/ [Accessed Sept
2020].

[4] ISO Functional Safety, 26262-1, 2018

[5] ISO, ISO/PAS 21448, Road vehicles — Safety of the intended
functionality, 2019

[6] MetaCase, MetaEdit+ User’s Guide. [Online]. Available at:
https://metacase.com/support/55/manuals/, 2018 [Accessed 4 Dec 2020].

[7] D. Moody, “The Physics of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering,” in IEEE
Transactions on Software Engineering, vol. 35, no. 6, 2009.

[8] B. Sari, Fail-Operational Safety Architecture for ADAS/AD Systems and
a Model-driven Approach for Dependent Failure Analysis. Springer,
2020.

[9] J.-P. Tolvanen, S. Kelly, “Effort Used to Create Domain-Specific
Modeling Languages”. In: Proceedings of the 21st ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems. ACM, 2018.

[10] Omg.org, System Modeling Language, version 1.6. [online] Available at:
https://www.omg.org/spec/SysML/1.6/PDF, 2019 [Accessed 4 Sept
2020]

https://metacase.com/support/55/manuals/
https://www.omg.org/spec/SysML/1.6/PDF

