
© 2023 MetaCase 1

Evaluating Tool Support for
Co-Evolution of Modeling

Languages, Tools and Models

Juha-Pekka Tolvanen, Steven Kelly
jpt@metacase.com; stevek@metacase.com

© 2023 MetaCase 2

Context: Co-Evolution

Modeling language Models generating code etc.

abstract syntax

concrete syntax semantics

improve

co-evolve

© 2023 MetaCase 3

Agenda

1. Context: Co-evolution

2. Current work and solutions

3. Research question

4. Evaluation framework

5. Validating framework

6. Conclusions and future work

© 2023 MetaCase 4

Current work and solutions

◼ Evolution is identified as a major challenge with tools

– 2nd most important feature: update models when language
changes (1st: highlight elements and related error messages)

◼ Research emphasizes creating model transformations

– Reported industry cases do not indicate their use

◼ Research on co-evolution has focused on metamodels
and models, a narrow focus

◼ Few tool evaluations

– Show that there is room
for improvements

– We applied them to MetaEdit+

GMF [20] Sirius [16]

1 add concrete class x x
2 add abstract class x o
3 insert superclass o x
4 delete class x x
5 rename class x x
6 add property x xo
7 delete property x x
8 rename property x x
9 move property x x

10 pull up property x o
11 change property type x xo

GMF [20] Sirius [16] MetaEdit+

1 add concrete class x x o
2 add abstract class x o o
3 insert superclass o x o
4 delete class x x o
5 rename class x x o
6 add property x xo o
7 delete property x x o
8 rename property x x o
9 move property x x o

10 pull up property x o o
11 change property type x xo o

© 2023 MetaCase 5

Research question

How to evaluate a tool’s capabilities to
support co-evolution of modeling

languages, tools and models?

➢ Evaluation framework for holistic co-evolution

– With easy to conduct evaluation method

– With evaluation case

– Applied it to show its viability

© 2023 MetaCase 6

To be or not to be;
To deprecate or destroy?

◼ Where a language change reduces the set of legal models,
it is rarely a good idea to adopt a strict formalist approach

– e.g. deleting parts of models that no longer conform

◼ Non-conforming parts still contain info and earlier choices
the modeler needs to use during model co-evolution

◼ Leave them: were legal when made, still generate correctly

◼ Deprecate: Allow old style but show warnings, guidance

◼ Follow experience with programming languages & libraries

– Make co-evolution fully automatic if certain

– Otherwise deprecate, provide update help

© 2023 MetaCase 7

Evaluation framework: 4 aspects

2 Location
of Change

↓

1 Nature of Change

Add Rename Remove Change

Metamodel 1 4 7 10

Constraints 2 5 8 11

Notation 3 6 9 12

4 Scale for scoring co-evolution:

1. When creating a new artifact, editor
does not open or gives errors

2. Editor opens without functionality

3. Editor allows creating a new artifact
but support for viewing and
editing earlier artifacts is
incomplete

4. Editor opens and asks for human
intervention to finalize co-evolution

4½ if existing models behave and
generate, and deprecation guidance
is provided where needed

5. Editor opens with fully co-evolved
earlier artifacts

1 Nature of Change

Add Rename Remove Change

3 Location adversely impacted

• Metamodel, Constraints, Notation
• Generators, Tool, Models

© 2023 MetaCase 8

A case 12 scenarios, evolutionary

1. Add Reset to metamodel

2. Add constraint: Only one Reset
and connection to one State

3. Add notation for Reset

4. Rename State to Situation

5. Rename constraint

6. Rename symbol from notation

7. Remove Reset from metamodel

8. Remove constraint: Reset is not
allowed to relate to Situation

9. Remove Reset’s notation

10. Change Transition’s Event
property to Source role

11. Change constraint from Reset to
new Start

12. Change notation refer to refer
another symbol

© 2023 MetaCase 9

Validating the framework

◼ Evaluated MetaEdit+

– Commercial Language Workbench
from MetaCase

◼ Implemented all 12 scenarios

– Took 32 minutes

– Does not require a lot of effort

◼ One person made the changes,
other checked their correctness

– All done in a single-user version

Each scenario available at https://github.com/mccjpt/Gothic

https://github.com/mccjpt/Gothic

© 2023 MetaCase 10

Location
of Change

↓

Nature of Change

Add Rename Remove Change

Metamodel
5 4 4½ 4½

Constraints
4½

—
4½ 5

Notation
5 5 5 5

Evaluation results 1. Add Reset to metamodel

2. Add constraint: Only one Reset
and connection to one State

3. Add notation for Reset

4. Rename State to Situation

5. Rename constraint

6. Rename symbol from notation

7. Remove Reset from metamodel

8. Remove constraint: Reset is not
allowed to relate to Situation

9. Remove Reset’s notation

10. Change Transition’s Event
property to Source role

11. Change constraint from Reset to
new Start

12. Change notation refer to refer
another symbol

Scores:
metamodel, constraints, notation | generator, tool, model

1. 4. 7. 10.

2. 5. 8. 11.

3. 6. 9. 12.

555|555 555|455 555|554½ 555|554½

555|554½
—

555|554½ 555|555

555|555 555|555 555|555 555|555

© 2023 MetaCase 11

Summary

◼ Holistic framework that covers co-evolution widely

◼ Works well even where fully automatic is not possible

– Deprecation approach is favored in industrial use

◼ Framework is viable

– Others can repeat and validate the evaluation made

– Other tools can be evaluated similarly

◼ Future work: extending what is evaluated

– Collaboration with many people

• both metamodeling and modeling

– Scalability: large models, language(s), multiple users

– Tool versions and meta-metamodel versions

© 2023 MetaCase 12

Thank you

Questions?

Comments?

Counter-arguments?

Experiences?

© 2023 MetaCase 13

Custom updates with MetaEdit+ API
Scenario 10: move Trigger from relationship to role

METype graphType = new METype() { name = "State machine" };
METype transitionType = new METype() { name = "Transition" };
METype sourceRoleType = new METype() { name = "Source" };

MetaEditAPIPortTypeClient api = new MetaEditAPIPortTypeClient();

foreach (MEOop graph in api.allGoodInstances(graphType))
{

foreach (MEOop transition in api.contentsMatchingType(graph, transitionType))
{

MEOop[] sources = api.rolesForRel(graph, transition, sourceRoleType);
MEAny trigger = api.valueForLocalName(transition, "Trigger");
api.setValueForLocalName(sources[0], "Trigger", trigger);

}
}

	Slide 1
	Slide 2: Context: Co-Evolution
	Slide 3: Agenda
	Slide 4: Current work and solutions
	Slide 5: Research question
	Slide 6: To be or not to be; To deprecate or destroy?
	Slide 7: Evaluation framework: 4 aspects
	Slide 8: A case
	Slide 9: Validating the framework
	Slide 10: Evaluation results
	Slide 11: Summary
	Slide 12: Thank you
	Slide 13: Custom updates with MetaEdit+ API Scenario 10: move Trigger from relationship to role

