MetaCase

Data4MDE + FPVM Panel

availability (or rather, lack of it) of
large datasets and repositories of modelling artefacts

Panelists: Jordi Cabot, Davide di Ruscio,
Steven Kelly, Jesus Sanchez Cuadrado

22.6.2021

Steven Kelly
B Background:
— Masters: Maths & Computer Science at Cambridge 1988-91
— CASE tool SW dev. + year working as a field linguist in Kenya
— PhD: Information Systems (MetaEdit+), Jyvaskyla 1993-97
— Multi-user, multi-paradigm, multi-tool, OO-repository-based
— CTO at MetaCase, 1996-
B MetaCase founded from university research project 1991
- Metamodeling & modelling tools: theory into practice
- Domain-Specific Modeling: make new language for org/proj
B Fortunate to acquire large cases early on and build on that
— 100s of metamodels, 100s GB of models, 1000s users
- Plus those where info / models are not shared with us

B] love making tools and processes efficient and scalable
© 2021 MetaCase

Questions & Opinions

B We all have so much to learn from each other!

1. Inyour opinion, why there are no large repositories/datasets of models?
— The most valuable models are often the most secret. This won’t change.
— Those most interested in openness are often least interested in visual modelling
e although there is at least one ‘graphical’ model by Linus!

2. What would be the socio-technical requirements for such repositories?

— Public sector systems should be open source, including models

— Need to solve the real-world problem of openness vs. vulnerability

— Multi-user collaboration and versioning based on people, models; not text, code
3. How can we foster the modelling community to share their models?

— Tooling to make it easy — and not just for tool developer ©

— Web platforms to offer a shared space and make it scale
© 2021 MetaCase

https://www.metacase.com/blogs/stevek/blogView?showComments=true&entry=3714903141

&

Linus’s state
diagram in

Linux kernel
on GitHub

& github.com/torvalds/linux/blob/master/net/ipvd/tcp_bbr.c#L17

*

*

*

*

Here is a state transition diagram for BBR:

W

+--->» STARTUP

I

I

| DRAIN ----+
I

I v

+---» PROBE_BW -+
I -
I I I
| e
I

PROBE_RTT <--+

A

& BBR flow starts in STARTUP, and ramps up its sending rate quickly.
the
state a BBR

BEBR flow

When it estimates pipe is full, it enters DRAIN to drain the gqueue.

In steady flow only uses PROBE_BW and PROBE_RTT.

& long-lived spends the vast majority of its time remaining

(repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth

in a fair manner, with a small, bounded queue. *If* a flow has been

continuously sending for the entire min_rtt window, and hasn't seen an RTT

sample that matches or decreases its min_rtt estimate for 18 then
it briefly enters PROBE_RTT to cut inflight to a minimum value
PROBE_RTT, if

enter PROBE_BW;

seconds,
to re-probe
the path's two-way propagation delay (min_rtt). When exiting
we estimated that we reached the full bw of the pipe then we

otherwise we enter STARTUP to try to fill the pipe.

