
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

How MetaEdit+ Supports Co-Evolution of
Modeling Languages, Tools and Models

Steven Kelly
MetaCase

Jyväskylä, Finland
stevek@metacase.com

ORCID: 0000-0003-0931-157X

Juha-Pekka Tolvanen
MetaCase

Jyväskylä, Finland
jpt@metacase.com

ORCID: 0000-0002-6409-5972

Abstract—Domain-specific modeling languages need to evolve

when the domain or development needs change, and this leads to

a need for co-evolution of related artifacts. We demonstrate how

MetaEdit+, a mature commercial language workbench, supports

co-evolution of domain-specific modeling languages, tools and

models. The demonstration is broken down into 12 different co-

evolution scenarios, showing how tools and models update in sync

with language changes. In all scenarios of language evolution

MetaEdit+ editors open and enable working with existing models,

and the models are typically automatically updated without the

need to create migration or model transformation programs.

When automatic co-evolution is not possible MetaEdit+ points to

the items requiring intervention.

Keywords—domain-specific modeling, co-evolution, domain-

specific language, maintenance, metamodel evolution, model

evolution

I. INTRODUCTION

Domain-specific languages need to evolve when the domain
or development needs change. This calls for tool support that
enables and supports evolution by co-evolving artifacts that
depend on the language, like tools and existing models.
However, most work discussing and evaluating tools for
domain-specific languages, also called language workbenches,
has focused on the initial language creation phase (e.g. [1][2][3])
rather than on language refinement and evolution in the
maintenance phase. In practice, the maintenance phase can be
seen as the most significant as it tends to require the most
resources: as well as tool co-evolution, it requires co-evolution
of potentially many models made with the language.

Research on co-evolution has focused on co-evolution of
models alongside language abstract syntax (for a survey see [4])
with less work on full language definitions including constraints
and concrete syntax, and their evolution. There is also a lack of
research covering tools’ capabilities to support co-evolution.
While work has been done to study limitations of Eclipse-based
editors, like GMF [5] or Sirius [6], less has been done on
evaluating commercial tools applied in industry.

In this paper we follow a recent evaluation framework [7] to
demonstrate how MetaEdit+ [8] supports co-evolution of
graphical modeling languages and models. The demonstration
shows that unlike tools in [5] and [6], none of the co-evolution
situations breaks MetaEdit+ tools. All models open with the
updated language allowing modelers to continue their work –

and if automated co-evolution is not possible MetaEdit+ points
to the model elements requiring human intervention.

II. CO-EVOLUTION EVALUATION FRAMEWORK

We demonstrate co-evolution capabilities of MetaEdit+
across the four aspects of [7], two covering the change itself and
two covering its results. The first aspect is the location of the
change: metamodel (abstract syntax), constraints, and concrete
syntax defining the notation or representation. The second is the
nature of the change: adding, renaming, removing or changing
parts of the language definition. These two aspects are presented
in Table I, giving 12 different co-evolution scenarios.

The third aspect is the location adversely impacted by the
change: other parts of the language definition, the tool support
for modeling, the generators, or existing models. The fourth
aspect is the tool’s ability to support the given co-evolution
scenario, scored from one to five:

1. When creating a new artifact, the editor does not open, or
gives tool errors or warnings.

2. Editor opens for creating a new artifact but does not
provide the functionality expected.

3. Editor allows creating a new artifact but support for
viewing and editing earlier artifacts is incomplete.

4. Editor opens and asks for human intervention to finalize
co-evolution of earlier artifacts.
(4½ if existing models behave and generate correctly, and
deprecation guidance is provided where needed.)

5. Editor opens with fully co-evolved earlier artifacts.

III. EVALUATION METHOD

We conduct the demonstration by implementing each of the
12 scenarios by refining the Gothic Security modeling language
presented in [9] (state-based modeling of the secret doors and
revolving bookcases of spy films: see Fig. 4 for an example).

TABLE I. LOCATION OF CHANGE VS. NATURE OF CHANGE [7]

Location of

Change ↓

Nature of Change

Add Rename Remove Change

Metamodel 1 4 7 10

Constraints 2 5 8 11

Notation 3 6 9 12

For each scenario from Table I, there is a concrete task to
demonstrate and be evaluated, taken from [7]:

1. Add element to metamodel: Add a new Reset element to
State machine, with a set of events that trigger it.

2. Add constraint: Only one Reset can be defined in a State
machine, and it can connect to only one State there.

3. Add notation: The symbol for Reset is created.
4. Rename element in metamodel: State is renamed to

Situation.
5. Rename constraint: In MetaEdit+, constraints do not have

names, so no change is needed.
6. Rename notation: The symbol for Situation is renamed.
7. Remove element from metamodel: The Reset element is

removed from State machine.
8. Remove constraint: Reset is not allowed to have a

relationship to Situation.
9. Remove notation: Reset’s symbol is removed.
10. Change metamodel: The Transition relationship’s Trigger

property is moved to the Source role (=relationship start).
11. Change constraint: Add Start, then update old Reset

constraints to point to Start instead, and add Start into the
original Transition binding.

12. Change notation: Make the Situation symbol refer to a
different library symbol.

Others can repeat these scenarios and thus perform the same
steps by downloading the MetaEdit+ repository from
https://github.com/mccjpt/Gothic and following the instructions
there. The initial version is the starting point to repeat this
demonstration and tool evaluation. The last version includes the
status with all scenarios implemented. In addition to Git’s
textual version history, the MetaEdit+ repository itself also
provides the change history of the models for all 12 scenarios,
available from the Changes & Versions Tool of MetaEdit+.
These version history features of MetaEdit+ are built-in,
available for all modeling languages and all kinds of changes,
both in languages and models.

IV. TOOL EVALUATED: METAEDIT+

MetaEdit+ [8][10] is a mature language workbench that
supports diagram, matrix and table representations. It enables
collaborative work on both levels: Multiple people can edit the
same language definition and multiple people can edit the
models at the same time. MetaEdit+ can be used as single or
multi-user local installations or remotely in the cloud.
MetaEdit+ is commercially successful, used in both industry and
academia, and is available to download at https://metacase.com.

V. DEMONSTRATING CO-EVOLUTION SCENARIOS

A. Adding New Language Elements: scenarios 1–3

1. Add a new Reset element to State machine, with a set of
events that trigger it. A new object type called ‘Reset’ is defined
and added to the language with the Graph Tool. It has one
property type called ‘Events’ as in Fig. 1. This property contains
a set of events and refers to the ‘Event’ type that is already
defined in the metamodel as part of Transitions.

After the change, editors are automatically updated and
Reset elements can be added. Editors show a default notation for
‘Reset’ – a proper notation is added later in scenario #3.

2. Add a constraint that only one Reset can be defined, and
it can connect to only one State. The Graph Tool is used to add
three things: an occurrence constraint to limit the number of
Resets in a State machine to one (Fig. 2), a binding to allow a
‘Transition’ from ‘Reset’ to ‘State’, and a connectivity
constraint to only allow each ‘Reset’ to be in one ‘Transition’.

After adding these constraints, existing models may no
longer follow the language definition: modelers may have
created multiple Resets earlier. To help users update models, the
language engineer defines a model annotation or checking report
to warn where there are multiple Resets. In our case, we make a
checking report that show errors at modeling time at the bottom
of the Diagram Editor, as shown later in Fig. 4.

When the constraint is added, all existing models still open
and editors update automatically. If a graph contains multiple
Resets, the checking report guides the modeler to leave just one.

3. Add a notation symbol for Reset. The Symbol Editor of
MetaEdit+ is used to define the Reset notation used in [9]: a
dotted rectangle listing the reset events. Fig. 3 shows this
definition.

After this change, editors update automatically, and models
show the new symbol for all Resets. The symbol is also shown
elsewhere in the user interface, e.g. in the toolbar, tree views and

Fig. 2. Setting occurrence constraint for ’Reset’.

Fig. 1 Adding ‘Reset’ to metamodel.

browsers (as shown in Fig. 4). If the symbol is hard to read when
scaled to fit a toolbar button, the language engineer can define a
dedicated icon with the Icon Editor of MetaEdit+.

B. Renaming Language Elements

4. Rename State to Situation in the metamodel. ‘State’ is
renamed to ‘Situation’ by changing its name in the Object Tool.
This renaming is automatically updated to constraints and
editors. The editors update automatically, with all States in
models now showing as Situations.

If there is already a generator that explicitly references
‘State’ by name, it must be updated by the language engineer.
The change can be made in the Generator Editor using find and
replace (wildcards and polymorphism make fully automatic

refactoring hard). If there are also other (different) elements
named ‘State’, e.g. in different dialects of state machines, the
search can be restricted to a specific modeling language.

5. Rename a constraint. In MetaEdit+, constraints do not
have names, so no change is needed.

6. Rename the Situation symbol/notation. Normally,
symbols in MetaEdit+ are directly related to language elements
and do not have names. A symbol can, however, also be stored
by name in a symbol library, and another symbol can incorporate
it from the library by referencing it by name in a Template
element. For instance, the ‘Situation’ symbol uses the
‘Rectangle’ library symbol. If ‘Rectangle’ is opened from
‘Situation’ and renamed to ‘BlackRectangle’, ‘Situation’ will
automatically use the new name. (If there are other symbols also
referring to ‘Rectangle’, the language engineer may update them
too to refer to ‘BlackRectangle’.) After this update, the new
notation is automatically reflected and applied in models.

C. Removing Language Elements

7. Remove the Reset element from State machine. The
‘Reset’ element can be removed from the Graph Tool’s Types
(see Fig. 5). This removes it from the language — it is no longer
possible to add Reset instances. This leaves us with the question
of how to treat existing Reset instances in models. Some tools
fail to support them anymore, leading to editors giving errors
opening existing models. Another option is deleting all existing
instances, but that generally loses too much information.
MetaEdit+ follows the mainstream approach of programming
language and natural language, effectively obsoleting Reset.
Existing instances remain, they can be viewed and edited, and
they still work and generate code just as before.

This approach of obsoleting rather than hard deletion allows
language users to see and update design data, while guiding
them not to use the old language concept anymore. The language
engineer can implement a model checking report to list instances
that should be deleted (or replaced). Alternatively, MetaEdit+
offers an API [11] that can be used to automate the update of
models. And if and when language engineers indeed want a full
permanent deletion, MetaEdit+ also supports that and checks for
existing instances or references from other metamodel elements.

Fig. 3. Adding symbol for ‘Reset’

Fig. 4. Model in editor after adding constraint and symbol for ‘Reset’

Fig. 5. Removing ‘Reset’ from the metamodel

8. Remove the constraint allowing Reset to have a
relationship to Situation. This constraint is the binding created
in scenario 2: a positive constraint allowing something, rather
than preventing something. It can be removed from the list of
bindings in Graph Tool (Fig. 6). Removing this constraint does
not require additional actions from the language engineer nor
from language users, given the checking report in scenario 7.

9. Remove notation for Reset. The symbol for a language
element, or any part of the symbol definition, can be removed in
the Symbol Editor.

After removing metamodel elements, constraints or
symbols, editors open existing models and provide the expected
modeling functionality. For scenarios 7 and 8 modelers are
guided to update named model elements: warnings that Resets
are to be removed (which will also remove their relationships).
After scenario 9 the defined symbol is no longer shown in the
models; if a symbol is needed, like here for old Reset instances,
a default symbol is shown.

D. Changing Links on Existing Language Elements

10. Change metamodel by moving Transition’s Trigger
property to its Source role. In MetaEdit+, changing a reference
to an existing element in the metamodel, like moving the
‘Trigger’ property to the ‘Source’ role, is based on a direct link
rather than an indirect reference by name. Rather than creating a
new property type, as in scenario 1, we use the existing ‘Trigger’
property type in a new property slot in ‘Source’ (Fig. 7).

After this change the ‘Transition’ relationship too still has
the ‘Trigger’ property slot, so information is not lost and
generators continue to work. Keeping ‘Trigger’ in ‘Transition’
is useful for this interim period, allowing current Trigger
information to be moved to the ‘Source’ role. This can be done
manually by reusing the existing Trigger event from the
Transition in the Source, or automatically by calling the
MetaEdit+ API. Language engineers can also prevent creating
new ‘Triggers’ in ‘Transitions’ by making this property read-

only. Language engineers can also make an annotation or report
as in scenario 2 to highlight the change policy wanted.

For the interim period during manual updates, the symbol in
‘Transition’ can be moved to ‘Source’ and updated to show the
Trigger from Source or, if missing, that from Transition. If they
do not match, an error symbol can be shown.

11. Change constraint: Add Start, then update old Reset
constraints to point to Start instead, and add Start into the
original Transition binding. First a new object type (‘Start’) is
added in a similar way to scenario 1. Next the existing
constraints set in scenario 2 for ‘Reset’ are updated, changing
‘Reset’ to ‘Start’. Fig. 8. shows a connectivity constraint
changed from ‘Reset’ to ‘Start’ allowing to have only one
Transition. To finalize the scenario, ‘Start’ is added to the
existing binding constraint in Graph Tool by including it
alongside ‘Situation’ in the objects for the ‘Source’ role.

12. Change Situation’s notation to refer to a different
library symbol. In the Symbol Editor for ‘Situation’, the

Fig. 8. Changing connectivity constraint for ‘Start’.

Fig. 7. Changing the ‘Trigger’ property to be in the ‘Source’ role.

Fig. 6. Removing binding constraint from the language

template element that uses library symbol ‘BlueRectangle’ is
changed to use library symbol ‘Situation’.

During the evolution through these changes, editors continue
to work without errors or omissions, and old models open
automatically. For scenario 10, modelers cannot add trigger
information to transitions anymore and they see notifications to
update the models. If model transformation is used for 10 and
11, existing models also update automatically, moving Trigger
information to the Source role.

VI. EVALUATION SUMMARY

Table II summarizes the results of the evaluation by showing
the score for each of the 12 scenarios. The overall score (bold)
for each scenario is given first, above sub-scores for affected
areas (italic). In most cases, the overall score is the highest, 5:
the editor opens with fully co-evolved earlier artifacts. In no
scenario is there an adverse impact on the metamodel,
constraints or notation, nor on the tool functionality: co-
evolution sub-scores for these are all 5. Moreover, none of the
12 co-evolution scenarios broke the other tooling functionality
beyond editors, as browsers, model management tools,
collaboration, change history, versioning etc. continue to work.

The situations where language users would need to act are
cases with score 4½. In all these cases only the model must be
updated, e.g. in scenario 2 when constraints are not met and a
single Reset must be chosen. Here the modeler sees a
notification calling for a human decision. Other scenarios with
score 4½ can be handled similarly — or the language engineer
can update the models or use the MetaEdit+ API to automate the
update. When the API is used, the score would be 5 when
removing Reset from the metamodel (scenario 7), removing the
binding constraint (scenario 8), or changing the metamodel links
to the Event property (scenario 10). In scenario 4, the renaming
of an element in the metamodel requires a manual find and
replace to update the generators, so this has a co-evolution score
of 4. This update is performed by the language engineer and does
not call for action from language users.

VII. CONCLUSIONS

We demonstrated co-evolution of modeling languages and
models in MetaEdit+, following the evaluation framework,
example language and model, evolution scenarios and scoring
in [7]. The detailed evaluation shows that editors of MetaEdit+
do not break in any of the cases of co-evolution. More
importantly, existing models always open in MetaEdit+ after
language changes and the language and models change history
can be viewed. These have proved to be vital features of
MetaEdit+ in industrial use, since its first version in 1995.

While here a single person conducted the language
engineering and modeling, in a single language and a single
model, the MetaEdit+ principles shown scale to industrial use
too. First, models also update for all other users working
collaboratively in that MetaEdit+ repository: they will see the
results at the start of their next transaction, in both the models
and the editor itself, with no need to exit or explicitly update.
Multiple people can also work on the language definition at the
same time. Secondly, the co-evolution happens similarly

regardless of how many languages there are. Thirdly, the
upgrade mechanisms are robust with respect to skipping
intermediate language versions and updating straight to the most
recent version, or deferring manual updates over versions.
Finally, the co-evolution of models works the same for large
models having hundreds of thousands of elements, without
delays or having to explicitly process models separately.

Others can repeat this demonstration and validate its results
by downloading the material from GitHub. The evaluation
framework will also hopefully be applied to other tools to assess
and compare their co-evolution support.

REFERENCES

[1] S. Erdweg, T. van der Storm, M. Voelter, M. Boersma, R. Bosman, W.R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P.J. Molina,
M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu,
E. Visser, K. van der Vlist, G. Wachsmuth and J. van der Woning. “The
state of the art in language workbenches”, Software Language
Engineering (SLE 2013), LNCS, vol. 8225. Springer, Cham. 2013.

[2] A. El Kouhen, C. Dumoulin, S. Gérard and P. Boulet, “Evaluation of
modelling tools adaptation”, CNRS HAL hal-00706701, 2012.
http://tinyurl.com/gerard12

[3] J.-P. Tolvanen and S. Kelly, “Effort used to create Domain-Specific
Modeling languages”, ACM/IEEE 21st Int. Conf. Model Driven
Engineering Languages and Systems (MoDELS 2018), ACM, 2018.
https://doi.org/10.1145/3239372.3239410

[4] Hebig, R., Khelladi, D. and Bendraou, R., “Approaches to co-evolution
of metamodels and models: A survey”, IEEE Transactions on Software
Engineering, vol. 43, no. 5, May 1, 2017

[5] D. Di Ruscio, R. Lämmel and A. Pierantonio, “Automated co-evolution
of GMF editor models”, Int. Conf. Software Language Engineering (SLE
2010), pp. 143–162, Springer, 2010.

[6] A. Pierantonio, J. Di Rocco, D. Di Ruscio and H. Narayanankutty,
“Resilience in Sirius editors: Understanding the impact of metamodel
changes”, ACM/IEEE Int. Conf. Model Driven Engineering Languages
and Systems (MoDELS 2018), 2018.

[7] J.-P. Tolvanen and S. Kelly, “Evaluating tool support for co-evolution of
modeling languages, tools and models”, 26th Int. Conf. Model Driven
Engineering Languages & Systems (MoDELS 2023): Companion
Proceedings, Workshop on Models and Evolution, ACM, 2023.

[8] S. Kelly, K. Lyytinen and M. Rossi, “MetaEdit+: A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment”, Conf.
Advanced Information Systems Engineering (CAiSE 1996), 1996.

[9] M. Fowler, Domain-Specific Languages, Addison-Wesley, 2010.

[10] MetaCase, “MetaEdit+ - User’s Guides” version 5.5,
https://metacase.com/support/55/manuals (accessed July 20, 2023)

[11] MetaCase, “MetaEdit+ Workbench User’s Guide” version 5.5, Chapter 9,
https://metacase.com/support/55/manuals/mwb/Mw.html#Mw-9.html
(accessed July 20, 2023)

TABLE II. METAEDIT+ CO-EVOLUTION EVALUATION SCORES:
METAMODEL, CONSTRAINTS, NOTATION | GENERATOR, TOOL, MODEL [7]

Location of

Change ↓

Nature of Change

Add Rename Remove Change

Metamodel
5

555|555
4

555|455
4½

555|554½
4½

555|554½

Constraints
4½

555|554½
—

4½

555|554½
5

555|555

Notation
5

555|555
5

555|555
5

555|555
5

555|555

