
Object-Oriented Metamodelling
In The MetaEdit+ MetaCASE Environment

Steven Kelly

Demonstration D5, ECOOP’97, Jyväskylä

June 10th Tue 17:30

June 11th Wed 11:30

http://web.archive.org/web/19980209035758/http:/www.ecoop97.jyu.fi:80/Demonstrations/

Object-Oriented Metamodelling Slide 1

Outline

Metamodelling

MetaEdit+

GOPRR

O-O features

Method Engineering

Object-Oriented Metamodelling Slide 2

Metamodelling and MetaCASE

Many Information System Development methods

Structured, Object-Oriented, BPR

Not all methods can be supported by CASE tools

Too many methods, evolving too fast

Separate CASE tool for each method problems

Isolates different parts of company, different projects, different phases

…Need a metaCASE tool to support any method

Model methods = metamodelling, CASE tool follows metamodel

Support and integrate multiple methods at once

Easy addition of new methods, changes to existing ones

Object-Oriented Metamodelling Slide 3

MetaEdit+ History

Based on experience gained with MetaEdit

First non-textual metaCASE environment

Thousands of users in over 30 countries

Completely new system: language, db, graphic library

3 major versions of each during project!

Core of 4 software engineers, about 10 others

Envy code management system

Later modelled MetaEdit+ with MetaEdit+

Own code: 140 classes, 30.000 lines

Total: 1450 classes, 396.000 lines, i.e. >90% reuse

requirements

phase start

core

functions

first full

version, no db

1 user

commercial

multi-user

commercial

93

94

95

96

97

Object-Oriented Metamodelling Slide 4

MetaEdit+ Features

Multi-user

True repository allows both multi-user modelling and metamodelling

Multi-tool

Diagram, Matrix, Table, plus browsers

Multi-method

Multiple, integrated methods, several O-O, structured, BPR etc.

Multi-level

Metamodelling and modelling within same toolset

Usability Flexibility Extensibility

Object-Oriented Metamodelling Slide 5

General Architecture

Object-Oriented Metamodelling Slide 6

Repository: ArtBase Object Store

Adds persistence to Smalltalk

Orthogonal: per instance not per class

Transparent: persistent objects behave just like normal ones

Classes are first-class citizens in repository

Even metaclasses treated mostly as first-class citizens

Late binding and caching enhance performance

Performs as Smalltalk during transactions except on first fetch

Memory management transparent to programmer

No special database language

Just need to mark objects as persistent once

Object-Oriented Metamodelling Slide 7

Metametamodel: GOPRR

Metatypes: Graph, Object, Relationship, Role, Property

Graph: DFD, Booch Class Diagram

Object: Process, Class

Relationship: Data Flow, Inheritance

Role: To, Superclass

Property: Process Number, Class name

Same language for models and methods

Sharpens learning curve for metamodellers

Reduces conceptual mismatches between method and model levels

All method information in data

No need to write code to metamodel

Object-Oriented Metamodelling Slide 8

Graph

Has properties in the same way as an object

Contains sets of objects, relationships and roles

Specifies how these are bound together
Binding = relationship, collection of roles, for each role a set of objects

E.g. Inherits (1 Superclass {Class, Class&Object})

 (1..N Subclass {Class, Class&Object})

Only place that links roles, relationships and objects:

avoid storing what relationships an object has etc.

Method Integration
Decomposition (strict), Explosion (more free-form)

Reuse: add objects, properties from other graphs

Object-Oriented Metamodelling Slide 9

GOPRR

Showing sizes

Role

MEModel

Concept

PropertyHolder Property

Object Relationship Graph

Binding

Object-Oriented Metamodelling Slide 10

Metamodelling with GOPRR:

Subclass metatype classes to make types

Define which properties to use etc. in form-based GUI

Subclass created automatically:

basically only addition in subclass is a variable for each property

Define symbol and property dialog (defaults created automatically):

these are stored in class instance variables

Instantiate subclasses for instances

Instance created

Initialised with default values for each property

User asked to fill in own values for properties

Representation of instance created (position & scaling info. etc.)

Object-Oriented Metamodelling Slide 11

Object-Oriented Metamodelling

Inheritance

Encapsulation

Polymorphism

Abstraction

Reuse

Object-Oriented Metamodelling Slide 12

Inheritance

Subtypes inherit supertype’s properties

Allows fast modelling of similar types, e.g. Class and Class&Object

Data type of complex property

Most data types simple, e.g. String, but may also be Object type etc.

Property can hold any instance of the given data type or its subclasses

E.g. reference to a Class could also be to a Class&Object

Bindings: Legal relationships

If an object type can take part in a binding, all its subtypes can too

Simplifies definition of legal relationships

Object-Oriented Metamodelling Slide 13

Inheritance (2)

Rules for legal values in property types

E.g. DFD Process number should be [0-9](.[0-9])*

Check supertype rules too: optional.

Reports

Can run reports from any supertype right up to Graph metatype

Object-Oriented Metamodelling Slide 14

Encapsulation

Behaviour always accompanies data

Rules, Symbols, and Dialogs stored with type

Rule = Smalltalk code block, automatically generated

Symbol = pure data structure

Dialog = data structure encoded in automatically generated method

Changes to type automatically update symbols and dialogs

All other behaviour inherited from metatype

Dependent on data in type, used by metatype’s methods

Object-Oriented Metamodelling Slide 15

Polymorphism

Object etc. as Property: ‘Complex’ property

Reference to another object

Way to hold complex piece of information

Relationship as Object

E.g. NIAM’s objectified relationship:

relationship itself takes part in another relationship like an object

Overloading

Many operations identical for both types and instances

Overriding

Subtypes can override dialogs, rules, symbols

A B

C

A-B

Object-Oriented Metamodelling Slide 16

Abstraction

Abstract types

Created but not used in Graph’s types set

Can still be used in Graph’s binding set

Useful when properties or legal relationships shared by several types

Can also be used as way to organise types, with no other semantics

Complex Properties

Can use without needing to know details of the object type

Better than encoding several pieces of information into a string

Separation of Binding and Relationship

Relationships carry no excess baggage to encumber their reuser

Object-Oriented Metamodelling Slide 17

Reuse

Objects, Roles, Relationships, Graphs, Properties

…both types and instances

Reuse on type level defines possible reuse on instance level

Reuse from different projects, graphs, objects

Choose by current location or type

Search for reusable elements in browsers (wildcards)

View where element is used

Over 30% of types in metamodels reused

Much higher figures possible if methods not followed exactly

Object-Oriented Metamodelling Slide 18

Method Engineering

software engineering ~ programming

method engineering ~ metamodelling

Reusable components

Integrate methods by reuse

Organise components, search and browse for reuse, view current users

Test metamodels by modelling immediately

No compile-link-run cycle

Update metamodels even when instances exist

Automatically update models

Warn about or disallow changes that are most dangerous

Object-Oriented Metamodelling Slide 19

Difficulties

Instance & inheritance hierarchies mixed?

E.g. Graph type behaves like a specialised Graph instance

Solution: Graph has instance methods duplicated as class methods

When to inherit behaviour

Don’t allow relationship subtypes in binding

Don’t inherit graph type contents, just copy them

Do we need inheritance for property types?

Need better tools for method engineer

Currently functionality divided among several tools

Improvements in searching for reusable types

Overview of methodology

Graph

GraphType

DFD

a DFD

model

metamodel

ECOOP ’97 demo programme email

From: Risto 'Rise' Pohjonen [rtpo@cc.jyu.fi]

Sent: 13. May 1997 14:06

To: 'mtilman@argo.be'; 'shai_by@NetVision.net.il'; 'stevek@jytkoson2.jyu.fi';

'buchner@pu.informatik.th-darmstadt.de'; 'klaus.makela@reserch.nokia.com';

'cimmino@rs0.corinto.interbusiness.it'; 'stadt@cs.utwente.nl';

'antero.taivalsaari@research.nokia.com'

Subject: Demonstrations

Dear ECOOP '97 demonstration proposers,

Here is my suggestion for the ECOOP '97 demonstration schedule. Most

of you wanted to give your demonstrations twice and I have tried to fix

everything up according to your preferences. Everyone has been given

the opportunity to give his/her demo once during the main conference

(Wed, Thu, Fri). During the main conference, demos will run

simultaneously with paper sessions (although not with invited talks

or the panel session). The "duplicate" demos have been allocated on

Monday and Tuesday and they will run simultaneously with the late-

afternoon tutorials.

Two demos have been allocated only once, so Mehmet & Richard and

Antero, please contact me if you want to have another one and we can

check things out - there are still some options.

What I need you to do now is to check out your demo time and the

information provided about your demo in this message. If there are

some problems with the scheduling, please let me know. The information

given here about your demo is the same that I have planned to be

included in the final programme. So, please check the titles of demos,

the names of your organizations and the content of the abstracts.

IF YOUR ABSTRACT (= D3, D6 and D7) EXCEEDS 20 LINES, PLEASE SUPPLY ME

A SHORTER ONE!

Best regards,

Risto Pohjonen

ECOOP '97 Demonstration Chair

ECOOP ’97 demo programme email

ECOOP '97 Demonstration Schedule

June 9th Mon 17:30 D1 (Shai Ben-Yehuda)

 18:30 D2 (Piergiorgio Cimmino)

 19:00 D3 (Klaus Mäkelä)

 19:30 D4 (Jürgen Buchner)

June 10th Tue 17:30 D5 (Steven Kelly)

 18:30 D6 (Martine Devos, Michel Tilman)

June 11th Wed 11:30 D5 (Steven Kelly)

 14:30 D7 (Mehmet Aksit, Richard van de Stadt)

 16:15 D8 (Antero Taivalsaari)

June 12th Thu 11:00 D1 (Shai Ben-Yehuda)

 14:00 D3 (Klaus Mäkelä)

 14:30 D4 (Jürgen Buchner)

June 13th Fri 9:30 D6 (Martine Devos, Michel Tilman)

 11:00 D2 (Piergiorgio Cimmino)

D1 Profiles in Java

 Shai Ben-Yehuda, SELA Labs, Israel

 The Profile paradigm suggests a way to develop user oriented software products, means to enable

users to customize their software products, adapting them to their specific needs. The methodology

guides the developers using it to synthesize the declarative section of the software out of the realm of

the developer to a neutral zone, called the profiles section. The profiles section is used and

maintained by both developers and users.The profiles paradigm is demonstrated in Java environment.

ECOOP ’97 demo programme email

D2 PDA Client-Server or Client-Server and Mobile Computing

 Piergiorgio Cimmino, CORINTO (Consorzio Ricerca Nazionale Tecnologia Oggetti), Italy

 Mobile Computing is perhaps the final fronteer of the Client - Server paradigm. The demo is about a

palmtop application (Newton Messages Pad 130) aimed at helping the Italian doctor to carry out their

own patient management activities. Its most attractive side, relies in the communication module

(which is called the Communication Toolbox), which allows communication, over the Internet (using

a PPP server), with a Nokia GSM Cellular phone (but also normal phone lines can be used) to an

HTTP server interfacing a C++, CLI CGI module which retrieves farmaceutical data and handle

reservations with a DB2/6000 database. Additional information and a sketch of the proposed

architecture can be found at: http://corinto.interbusiness.it/P6//P6_welcome.html

 Corinto (http://corinto.interbusiness.it) is a joint venture among IBM, APPLE, and SELFIN.

D3 The training of the OCTOPUS method via Internet at Nokia

 Klaus Mäkelä, Nokia Research Center / Software Technology Laboratory, Finland

 Octopus is a method for developing object-oriented software particularly for embedded real-time

systems. It has been developed at Nokia Research Center and it is widely used at different Nokia

Business Units. Octopus method is teached to Nokians on different tutorials and this training program

is supported by Nokia internal Internet courses. We demonstrate two of these courses here.

 Visual Octocourse is an active map based Internet course. It gives a systematic introduction to

Octopus method. Topics include:

 1. structure of the development process of a software system

 2. development sequences of requirements specification, system architecture, subsystem analysis,

subsystem design and performance analysis.

 All six topics are active maps with 5 - 10 references to the diagrams, scenarios and different

datasheets of the method.

 General Octopus Course is a textual Internet course. The course gives an outline of the OCTOPUS

method. The course covers major concepts of the method: structuring the development process,

system requirements and architecture phases and subsystem analysis, design and implementation

phases. The texts are clarified with figures and tables. The course includes a glossary of the

definitions and notations.

ECOOP ’97 demo programme email

D4 HotDoc - A Framework for Compound Documents

 Jürgen Buchner, Technische Hochschule Darmstadt, Germany

 HotDoc introduces a new interpretation for the concept of a "document". A HotDoc document is not

only a static sequence of text and pictures etc., a HotDoc document is a user interface for

applications, which can be combined and placed freely by the user within a document.

 HotDoc is a framework for the development of editors for compound documents. It is implemented

in VisualWorks Smalltalk. Due to its object-oriented nature, many restrictions of other systems do not

apply to HotDoc. It can be used by developers to implement application-specific editors or user

interfaces.

D5 Object-Oriented Metamodelling in the MetaEdit+ MetaCASE Environment

 Steven Kelly, MetaPHOR project, University of Jyväskylä

 We will demonstrate the use of object-oriented metamodeling for fast, incremental definition and

evolution of methods in MetaEdit+.

 Recent studies suggest that a main reason for the perceived failure of CASE tools has been the

narrowness of their approach, which forces designers to use a fixed set of methods supported.

MetaCASE tools, which allow modification and definition of new method support into CASE tools,

have however been difficult to use.

 MetaEdit+ is a metaCASE tool which uses a simple browser- and form-based GUI for method

definition. The methods are definedas a set of reusable object-oriented components, and method

 definition and use are accomplished within the same tool, enabling fast method development and

incremental evolution. Existing models are automatically updating to reflect changes in the method.

MetaEdit+ method modelling supports inheritance, encapsulation, polymorphism and abstraction.

ECOOP ’97 demo programme email

D6 Evolutionary Application Development using a Meta-repository based Framework

 Martine Devos, Argo, Belgium

 Michel Tilman, Argo, Belgium

 The Argo framework is an object-oriented framework developed inVisualWorks\Smalltalk for

modeling the business logic of a wide variety of organizations and application domains, making as

few assumptions as possible about particular business models. It offers a set of generic tools for

defining, customizing, managing and maintaining the business objects pertaining the workings of a

particular organization, be it in the context of database applications, electronic document

management or workflow. Its main business areas are large administrations which need to cope with

several applications sharing a common business model.

 The key features of the architecture are its open-ended nature, relying on an extensible framework of

re-usable components containing the generic application logic, and on a meta-repository containing

descriptions of the actual business model.

 The repository captures both formal and informal knowledge of the business model and of personal

and shared work practices. High-level end-user and administration tools consult the repository at run-

time, querying the meta-model for dynamic behavior. Changes to the repository can be made at-

runtime and are immediately available to clients.

 End-user applications can be developed interactively and incrementally through modeling and

configuration. They are not hard-coded, neither are they generated. Instead, we build increasingly

complete specifications of end-user applications that can be executed immediately. This way,

applications can evolve more easily with changing needs or organization, be it at the level of

functionality or the business model.

D7 Composable Solutions to Modeling Problems of the Object Model Using Composition Filters

 Mehmet Aksit, TRESE project, University of Twente, The Netherlands, TRESE project, University

of Twente, The Netherlands

 The conventional object-oriented model as adopted by languages such as C++, Smalltalk and Java is

not capable of modeling certain aspects of applications in an adaptable and reusable way. Some of

these modeling problems are for example multiple views, dynamic inheritance, reusable

synchronization specifications, and reusable constraints.

 Since 1987 we have been carrying out research activities at the University of Twente to enhance the

expression power of the object-oriented model.

ECOOP ’97 demo programme email

 We investigate solution techniques using the following criteria:

 1. To solve the modeling problems, the object model must be enhanced modularly without losing its

basic characteristics.

 2. Since more than one problem can be experienced for the same object, enhancements must be

independent from each other.

 As a result, we have extended the conventional object-oriented model with the concept of

composition filters. Composition filters can be attached to objects without modifying the basic object

structure.

 A number of different filter types have been defined, each addressing a certain concern. For example,

the Dispatch filter can be used to express dynamic inheritance and delegation mechanisms.

Constraints among objects can be modeled by using Meta filters. The Wait filter is suitable for

defining reusable synchronization constraints [4,5]. The RealTime filter is useful for programming

classes with a reusable real-time behavior.

 We will illustrate solutions for the aforementioned modeling problems using Sina, an object-oriented

programming language which adopts the composition filters model.

D8 TDE -- Collaborative Environment for Geographically Distributed Object-Oriented Software

Design

 Antero Taivalsaari, Nokia Research Center, Software Technology Laboratory, Finland

 TDE (Telecom Design Environment) project builds visual software design and reverse engineering

tools for Nokia's software developers. The project focuses especially on features that facilitate

seamless, interactive, "live" collaboration between designers located in different buildings, cities or

even countries. The TDE environment combines many challenging technology dimensions, including

visual information and document management dimension, OOA/OOD CASE tool dimension, and

"liveboard" collaboration and communication dimension. In this demonstration the capabilities of

TDE are illustrated, and the future directions of the system are outlined.
