
 169

Chapter 5:

Support for Incremental Method Engineering and

MetaCASE

This paper is published in Proceedings of the 5th Workshop on the Next Generation of CASE Tools,

CAiSE’94, Utrecht, the Netherlands, Memoranda Informatica 94–25, 1994, pp. 140–148.

 170

Support for Incremental Method Engineering and
MetaCASE

S. Kelly and V.-P. Tahvanainen

Department of Computer Science and Information Systems

University of Jyväskylä

P.O. Box 35

FIN-40351 JYVÄSKYLÄ

Finland

Email: {stevek|vpt}@hyeena.jyu.fi

1. INTRODUCTION

In this paper we discuss the problems related to supporting incremental method

engineering, i.e. the crafting of a design method for a specific IS development

project ‘on the fly’. A necessity for this approach is a reliable and efficient

metaCASE environment, a tool or a set of tools that can be adapted to support

different IS design methods, in a manner similar to that of a CASE tool

dedicated to that particular method, whilst retaining basic ‘look and feel’ and

functionality across different methods. In addition, a somewhat different set of

tools is needed for working on metamodels, i.e. descriptions of information

system development methods (see e.g. Wel92 for details).

We start the discussion by briefly explaining the principles of incremental

method engineering and outlining the specific requirements that they impose

upon the computerised support environment.

In Section 3 we discuss metamodels, i.e. models of the design methods that are

crafted and used during the incremental method engineering process. We show

how the GOPRR data model can function as a basis of method component

integration and illustrate the issue with a small example. Finally, we

recapitulate the most important results in the conclusions section.

 171

2. INCREMENTAL METHOD ENGINEERING AND ITS
CONCEPTUAL PREREQUISITES

The concept of method engineering — analogous to software engineering —

was first introduced by Kumar and Welke (Kum88). After Heym (Hey93a) we

define it to be the systematic and structured process of developing, modifying and

adapting information systems (IS) development methods1 by describing the components

of the method and their relationships. (See van Slooten & Brinkkemper (Slo93) for a

slightly different definition that focuses on the contingencies and purpose of

method engineering.) The modelling of the components and their relationships

is commonly known as metamodelling (cf. Bri90), and it has obvious uses even

outside the area of method engineering (Bri89, Hon92). By incremental method

engineering we mean the process of method engineering as defined above

applied during the process of IS development in order to craft a specific IS design

method for the purposes of the project and taking into account the specific contingencies

that affect the current development situation. The need for method engineering has

also been observed in industry (Hid93).

Incremental method engineering obviously requires support by flexible CASE

tools, often referred to as metaCASE tools or CASE shells, (analogous to expert

system shells, see Bub88) that can be easily adapted to support any IS design

method or method component. Some existing tools for this purpose are

RAMATIC (Ber89), MetaEdit (Smo91), Virtual Software Factory (Poc91,

Hey93b), ToolBuilder (Ald91), and MetaView (Sor88) (see also Mar93 and

Har93). In addition to this, however, tools are needed which can create and

manipulate models of methods and their components (henceforth referred to as

metamodels) e.g. MetaEdit or the VSF-based MEET (Hey93b). Further, for

incremental method engineering we need at least some way of modelling the

1The vocabulary used in referring to these concepts is unfortunately not very well

standardized. A method in the sense we are employing here is often — especially in American

usage — referred to as a methodology. For method components, terms like method (Lyy89),

technique (e.g. Bri90) or fragment (Har93) have been proposed.

 172

software development process (cf. Wij91), and — to link arbitrary concepts

between method components — a way of describing the semantic relationships

of concepts (and their respective notations) across metamodels (called route

maps by Harmsen & Brinkkemper). Thus, a repository to support incremental

method engineering needs at least three levels:

1. models: The IS models created with the metaCASE tool(s).

2. metamodels: The models of IS design method components that are

reused and reconfigured to make the IS design method employed in a

project.

3. the meta-metamodel: The datamodel with which the metamodels and

their relationships can be described and manipulated.

In the following section we take a closer look at the requirements these

conceptual models and their efficient manipulation impose. Another approach

based on using an existing metaCASE tool is described in (Har93).

3. CONCEPTUAL SUPPORT FOR METHOD ENGINEERING

To provide support for users on both the model level (CASE) and the

metamodel level (method engineering), we must maintain consistency of design

information along at least two dimensions, namely (cf. Mar93):

1. Horizontal consistency, the consistency between semantically equivalent

descriptions on the same level, for example between an Entity Relationship

model and a Data Flow diagram;

2. Vertical consistency, the consistency between descriptions on different

levels, for example between an Entity Relationship model and the equivalent

metamodel.

 173

We shall look at these two areas in turn, considering first how we can make the

necessary links between different design objects which are in some way

considered to represent the same real world object, and secondly how we can

provide the method engineer with tools which make his job — creation and

maintenance of the metamodels which define these links — easier and more

efficient.

The GOPRR meta-metamodel (Smo93), based on Welke’s OPRR (Wel92), will be

used to describe methods. GOPRR can be used to model both the metamodel

(type) level and the model (instance) level. It has 5 concepts, set out below with

their representations in metamodelling (in modelling, their representations of

course change according to the method) and their function:

• Properties, represented as ovals, which contain single data entries such as

a name, text field or number (there are also complex properties,

represented by double ovals, which can contain a number of properties as

a list);

• Objects, represented as rectangles, which contain properties and model

concepts like ER Entity and DFD Process (there are also complex objects

which contain a breakdown of their internal structure, modelled with the

same concepts);

• Relationships, represented as diamonds, which contain properties and

model concepts like DFD Data Flow;

• Roles, represented as circles, which contain properties and model concepts

such as which end of a relationship is ‘to’ and which ‘from’;

• Graphs, represented as rectangles with a Windows-like title bar, which

have their own set of properties, and also contain collections of Objects,

Relationships and Roles, and even other Graphs as the contents of

complex Objects. A Graph type can be used to model a method or method

 174

component specification, e.g. Object-Oriented Analysis (Coa90) or Data

Flow Diagram; a Graph could be a Data Flow Diagram describing an

order system.

Any Property, Object, Relationship or Role can explode to a Graph. In an OPRR

diagram, these symbols are linked to show which Properties go with each

Object etc., and the legal ways of connecting Objects of various types via

Relationships are shown by a chain of Object-Role-Relationship-Role-Object,

referred to as a binding.

3.1 Method Integration

To support method integration, we need a meta-metamodel which is first able

to cope well with links within a single Graph or Graph type. GOPRR is

particularly satisfactory in this respect, as it has advanced capabilities for

linking Objects via Relationships and Roles, including n-ary Relationships (i.e.

Relationships with more than two Roles), and the ability to define properties for

both Relationships and Roles. Objects can have a truly recursive structure,

containing other Objects, Relationships and Roles, and maintaining the

distinction between these sub-Objects and Properties of the parent Object. In

attempting to remove this distinction, Petry (Pet88) falls in to the problem that

his approach loses the parent-child connection, and cannot support copying of

complete complex objects. Further, instances of all GOPRR meta-types may

explode to a Graph, and the conceptual-representational distinction allows re-

use of model components: for instance, an Object may have representations in

several Graphs, but all of these will reference the same set of Properties.

These, however, are not yet sufficient: we need to integrate between Graphs of

different types. GOPRR uses class-based inheritance to ease the task on the

metamodelling level, and Wilkes (Wil88) goes one stage further by allowing

instance inheritance: a model component can inherit values as well as type

structure. However, Wilkes links this inheritance to the class inheritance

 175

structure, thus removing the generalised possibility of sharing values between

design components whose types are unrelated. The approach we suggest is to

allow sharing of Properties: any design component may have Properties, and

each component stores its Properties by reference, not value. Hence several

components may have references to the same Property, and if it is changed via

one component, then all the other components will see it with the new value.

This approach has the further benefit of allowing components with different

GOPRR meta-types to have the same sets of Properties: for instance, an Entity

Relationship Diagram ‘Relationship’ is actually a GOPRR Object, but may well

model the same real world concept as a Data Flow Diagram ‘Data Flow’, which

is a GOPRR Relationship. In the example diagram in Figure 1, three Graphs

contain Objects or Relationships, all referring to a real world mercury delay

line, and hence all sharing the same properties, and also all exploding to the

same decomposition Graph.

Properties:

Length (m): 2
Speed (m/s): 4
Decay Rate (W): 0.01
Max. Density (1/s): 9

Mercury
Mercury

SecondFirst

Trigger Reflect Readout

Retrigger

DFD:Mercury

Ones

Tens

Sum Input Output

As A
DFD Datastore

As An

As A

ERD Relationship

DFD Dataflow

Explodes To
DFD

Explodes To

DFD

DFD
Explodes to

Input OutputMercury

Explosion

DFD: Addition

DFD: Addition Overview

ERD: Add Design

Figure 1: Method Integration by Property Sharing

 176

This approach is sufficient in many cases, but cannot of course handle the

general case, where there is some relationship between Properties of two model

components, but not one of simple equality. For example, there could be

another concept modelling the mercury delay line, which had a Property

‘delay’. The value of this can of course be calculated as Length / Speed, but the

question of how to provide the method engineer with tools to create such links

is a difficult one. For complete generality, nothing short of a functionally

complete programming language would suffice. The suggestion of Rumbaugh

(Rum88) to tag relationships between object types to show which operations on

those objects should spread to objects connected by the relationships could be

extended, so that Properties could be connected by various links, and an update

to a Property could be propagated to linked Properties in an appropriate way.

Dayal et al. (Day88) suggest that Event-Condition-Action rules should be used

as first-class objects in the repository, and such rules could be used with an

active database to calculate and propagate updates to linked Properties

appropriately.

3.2. Method Component Reuse

The purpose of method integration is to allow connections to be made and

maintained between dissimilar Graph types. Clearly, when metamodelling an

existing method from a book this presents few real problems: we know from the

start which connections should be there, and can easily make such links as are

necessary. The problems arise in the unfortunately more common situation that

an organisation wants to use a variety of methods or method components that

were not necessarily designed to work as a coherent set. In this case, it should

be possible to use existing Graph types to form a metamodel. In fact, what we

need are links to existing Graph types: if we merely copy the contents of those

Graphs, we create a consistency time bomb, as changes made to one copy

cannot be easily propagated to the other copies. Although there will be times

when a simple copy is wanted (and hence this functionality too must be

 177

provided), a system which allows the method engineer to see which method

components have been used where, and update them collectively or

individually, will be invaluable. Further, the inter-Graph links to and from a

given Graph type will differ depending on the metamodel, and thus should be

defined in the metamodel. Hence only the metamodel ‘knows’ both ends of the

link, and each Graph type ‘knows’ only its internal information, and can thus be

re-used without changes in many metamodels.

A problem arises in trying to represent this metamodel to the user: the sheer

size of the methods used in real projects. This rules out the simple approach of

showing all the contents of the component Graph types at the metamodelling

level. A more reasonable approach is to make a metamodel Graph that contains

the constituent Graph types as complex objects, each containing only those

types that are part of some inter-Graph link. The ability to use complex objects

at this stage is another indication of the power of using the same GOPRR meta-

metamodel schema at both the metamodel and model levels: the functionality

and user interface need only be made once, and learned once by the user. A

further benefit of complex objects in metamodelling is that an Object, Role or

Relationship can be collected together with its Properties as a complex Object,

and a library compiled of these method building blocks: other still larger blocks

can of course be made in the same way. Thus the user is not limited to one

definition of ‘reusable method component’, but can create his own system,

modifying it according to need. Hence the incremental approach is not only

applied to methods, but also to the process of method engineering itself.

 178

The Coad and Yourdon Object Oriented Analysis method (Coa90) is presented

here in Figures 2 (Graph types) and 3 (metamodel) as an example, modelled

according to this approach. The reader should note particularly that each of the

Graph type definitions has been made without any information as to which

types would take part in method integration, and therefore could be re-used

without copying or changing in another putative metamodel which included,

Subject

Class&Object

Class

Instance

Gen-spec

Whole-part

Message

f romto

Amount/Range

Class-&-Object

genspec

message-f rommessage-to

Critical thread

Serv ices

Label

Attributes

Name

Description

Constraints

Object Diagram

Inherits f rom

Includes

Condition Text Block Loop

Connector

Text

Cond conn f rom Conn to Conn f romConnector

Condition ty pe Loop ty pe

Branch cond

Service Chart

Description

Value

Transition label

Attribute-v alue pairs

Attribute

Name

State

Transition

Transition toTransition f rom

State Transition Diagram

Figure 2: Coad & Yourdon Object-Oriented Analysis Graph Types

 179

say, Object Diagrams and Data Flow Diagrams. Also, to change how the

method integration works, or to add another Graph type to the method, we

would only need to change the final diagram, probably only by adding the

Graph type and maybe one object type. This example was deliberately chosen

as it is quite small, and thus easy to assimilate. With a larger example, the

metamodelling Graph (Figure 3) could be split over several Graphs: the same

Graph types could appear more than once as complex Objects in these

metamodel Graphs.

Coad & Yourdon Object-Oriented Analysis

Object Diagram Service Chart

State Transition D.

Class&Object

Service

Attribute

Attribute

Explodes to

Explodes to

Property
Sharing

Figure 3: Coad & Yourdon Object-Oriented Analysis Metamodel

As can be seen from Figure 3, the method consists of three Graph types, and the

inter-Graph links are as follows: in Object Diagram, Service can explode to

Service Chart, and Class&Object to State Transition Diagram, and the Property

‘Attribute’ in the Object Diagram is the same as that in the State Transition

Diagram. In practical terms, the last connection means that when the Property

‘Attribute’ is being filled in in either of these Graph types, the user can choose

to create a new Attribute, or select from among those already created in either

diagram.

 180

4. CONCLUSIONS

GOPRR was shown to be a good basis on which to build support for method

integration, and extensions were presented to support this and incremental

method engineering. In particular, it was shown how method integration could

be performed by Property sharing, even between model components of

different meta-types; how metamodels could be built of Graph types, without

altering the Graph types and thus restricting them to use within that particular

metamodel; and how Objects, Relationships and Roles and their Properties

could be stored in a metamodel as complex Objects, thus allowing their reuse in

different Graph types. Coad and Yourdon’s Object-Oriented Analysis was then

presented as a practical example, metamodelled according to this approach.

REFERENCES

Ald91 Alderson, Albert, “Meta-CASE Technology,” in Software Development

Environments and CASE Technology, Springer-Verlag, Berlin (1991).

Ber89 Bergsten, Per, Janis Bubenko jr., Roland Dahl, Mats Gustafsson and

Lars-Åke Johansson, “RAMATIC — A CASE Shell for Implementation of

Specific CASE Tools,” SISU, Gothenburg (1989).

Bri89 Brinkkemper, S., M. de Lange, R. Looman and F. H. G. C. van der

Steen, “On the Derivation of Method Companionship by Meta-Modelling,”

Imperial College, London, UK (July 17–21,1989).

Bri90 Brinkkemper, Sjaak, “Formalisation of Information Systems Modelling,”

Thesis Publishers, Amsterdam (1990).

Bro91 Brown, Alan W., “Object-oriented Databases: their applications to software

engineering,” McGraw-Hill, Maidenhead UK (1991).

Bub88 Bubenko, Janis A., “Selecting a strategy for computer-aided software

engineering,” SYSLAB University of Stockholm, Stockholm (June 1988).

Coa90 Coad, P., E. Yourdon, “Object-Oriented Analysis,” Englewood Cliffs,

New Jersey (1990).

 181

Day88 Dayal, Umeshwal, Alejandro P. Buchmann and Dennis R. McCarthy,

“Rules Are Objects Too: A Knowledge Model for an Active, Object-

Oriented Database System,” in Advances in Object-Oriented Database

Systems: 2nd International Workshop on Object-Oriented Database Systems,

Springer-Verlag, Berlin (1988).

Har93 Harmsen, Frank, Sjaak Brinkkemper, “Computer Aided Method

Engineering based on existing Meta-CASE technology,” in Proceedings

of the Fourth Workshop on The Next Generation of CASE Tools, Univ. of

Twente, Enschede, the Netherlands (1993).

Hey93a Heym, Michael, “Methoden-Engineering Spezifikation und Integration von

Entwicklungsmethoden für Informationssysteme,” Hochschule St.Gallen,

St.Gallen, Switzerland (1993).

Hey93b Heym, M., H. Österle, “Computer-aided methodology engineering,”

INFORMATION AND SOFTWARE TECHNOLOGY 35(6/7) (June/July

1993) pp.345–354.

Hid93 Hidding, Gezinus J., Johan K. Joseph and Gwendolyn M. Freund,

“Method Engineering at Andersen Consulting: Task Packages, Job

Aids and Work Objects,” in 2nd International Summerschool on Method

Engineering and Meta Modelling conference binder, Univ. of Twente,

Enschede, the Netherlands (1993).

Hon92 Hong, Shuguang, Geert van den Goor and Sjaak Brinkkemper, “A

Formal Approach to the Comparison of Object-Oriented Analysis and

Design Methodologies,” in Comparison of Object-Oriented Analysis and

Design Methods: a Collection of Papers, University of Twente,

Netherlands (1992).

Kat84 Katz, Randy H., “Transaction Management in the Design

Environment,” in New Applications of Databases, Academic Press,

London UK (1984).

 182

Kum88 Kumar, Kuldeep, Richard J. Welke, “Methodology Engineering: A

Proposal for Situation Specific Methodology Construction,” in

Proceedings of CASE Studies 1988, Meta Systems, Ann Arbor (1988).

Lyy89 Lyytinen, Kalle, Kari Smolander and Veli-Pekka Tahvanainen,

“Modelling CASE Environments in Systems Development,” in

Proceedings of the first Nordic Conference on Advanced Systems, SISU,

Stockholm (1989).

Mar93 Marttiin, Pentti, Matti Rossi, Veli-Pekka Tahvanainen and Kalle

Lyytinen, “A Comparative review of CASE shells: A preliminary framework

and research outcomes,” Information & Management 25 (1993) pp.11–31.

Pet88 Petry, E., “A Model for an Object Management System for Software

Engineering Environments,” in Advances in Object-Oriented Database

Systems: 2nd International Workshop on Object-Oriented Database Systems,

Springer-Verlag, Berlin (1988).

Poc91 Pocock, John N., “VSF and its Relationship to Open Systems and

Standard Repositories,” in Software Development Environments and

CASE Technology, Springer-Verlag, Berlin (1991).

Rum88 Rumbaugh, J., “Controlling Propagation of Operations using

Attributes on Relations,” in Proceedings of the ACM Conference on Object-

Oriented Programming Systems, Languages and Applications (OOPSLA),

San Diego, California (1988).

Slo93 Slooten, Kees van, Sjaak Brinkkemper, “A Method Engineering

Approach to Information Systems Development,” in Procs. of the IFIP

WG 8.1 Working Conference on the Information Systems Development

Process, North-Holland, Amsterdam (1993).

Smo91 Smolander, Kari, Kalle Lyytinen, Veli-Pekka Tahvanainen and Pentti

Marttiin, “MetaEdit — A Flexible Graphical Editor for Methodology

Modelling,” in Advanced Information Systems Engineering CAiSE'91

proceedings, Springer-Verlag, Berlin (1991).

 183

Smo93 Smolander, K., “GOPRR: a proposal for a meta level model,” in

MetaPHOR internal technical document (24.8.1993).

Sor88 Sorenson, Paul G., Jean-Paul Tremblay and Andrew J. McAllister, “The

Metaviw System for Many Specification Environments,” IEEE SOFTWARE

(March 1988) pp.30–38.

Wel92 Welke, Richard J., “The CASE Repository: More than another database

application,” in Challenges and Strategies for Research in Systems

Development, Wiley, Chichester UK (1992).

Wij91 Wijers, Gerard, “Modelling Support in Information Systems Development,”

Thesis Publishers, Amsterdam (1991).

Wil88 Wilkes, Wolfgang, “Instance Inheritance Mechanisms for Object-

Oriented Databases,” in Advances in Object-Oriented Database Systems:

2nd International Workshop on Object-Oriented Database Systems,

Springer-Verlag, Berlin (1988).

