Managing the Co-Evolution of Domain-Specific
Languages and Models

Juha-Pekka Tolvanen

MetaCase
Jyviaskyld, Finland
Jjpt@metacase.com

Abstract— Refinement, enhancement and other maintenance
tasks normally account for more work than the initial
development phase. This applies to domain-specific languages
and models too. This tutorial describes practices for managing
the evolution of domain-specific modeling languages, while co-
evolving the models that have already been created. The
presented practices are field-tested in industry cases — some
managed and refined over three decades. Participants will learn
practices and patterns to form part of their toolbox for evolving
their languages while in use alongside models. During the tutorial
the practices learned are made concrete by applying them to
sample cases.

Keywords—domain-specific modeling, domain-specific
language, evolution, maintenance, metamodel, model evolution

1. TUTORIAL DESCRIPTION

A. Short bios

Dr. Juha-Pekka Tolvanen is the CEO of MetaCase and co-
founder of the DSM Forum. He has been involved in model-
driven development and tools, notably metamodeling and code
generators, since 1991. He has acted as a consultant world-wide
for modeling language development, authored a book on
Domain-Specific Modeling, and written over 70 articles for
various software development magazines and conferences.
Juha-Pekka holds a Ph.D. in computer science and he is an
adjunct professor (docent on software development methods) at
the University of Jyvaskyla.

Dr. Steven Kelly is the CTO of MetaCase and co-founder
of the DSM Forum. He has over twenty years of experience of
consulting and building tools for Domain-Specific Modeling.
Steven acts as an architect and lead developer of MetaEdit+,
MetaCase's domain-specific modeling tool, he has seen it win
or be a finalist in awards from SD Times, Byte, the Innosuomi
prize for innovation awarded by the Finnish President. He is
author of a book and over 50 articles. Steven has an M.A.
(Hons.) in Mathematics and Computer Science from the
University of Cambridge, and a Ph.D. from the University of
Jyviskyla.

B. Proposed length
Half-day

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Steven Kelly

MetaCase
Jyviaskyla, Finland
stevek@metacase.com

C. Level of the tutorial
Advanced

D. Target audience

This tutorial is intended for all involved in creating
Domain-Specific Modeling (DSM) languages and related
generators. Language engineers will learn via scenarios from
practice how to conduct and manage the evolution of the
modeling languages and related generators.

Participants are expected to have experience on some
language definition mechanism, mostly on using some
metamodeling language.

II. TUTORIAL DESCRIPTION IN DETAIL

Refinement, enhancement and other maintenance tasks
normally account for more work than the initial development
phase. This applies to domain-specific languages and models
too. Compared to general purpose languages, domain-specific
languages evolve more frequently — along with the changes in
the domain and in the development needs [1,2]. This tutorial
describes proven practices for managing evolution of modeling
languages along with the models already created. In particular
the latter is important as we normally don’t want to lose the
work done with earlier version of the modeling language or
start updating models each time the language evolves.

The tutorial approaches the co-evolution of languages and
models from two angles. The first angle is the nature of the
change: adding, renaming/updating or deleting. The second
angle is the part of the modeling language been changed:
abstract syntax, concrete syntax or semantics. The practices
presented have been learnt and proven in industry cases [2, 3] —
the longest having been originally defined in the mid 90’s and
still in use today. We illustrate the cases of evolution using
examples that are also available during the tutorial to try out.
The tutorial concludes by describing change management and
versioning practices for evolving modeling languages and their
models. The following subsections describe the main aspects of
the tutorial focusing on the two angles of evolution.

A. Adding new elements to the language

Adding new concepts to a modeling language (to its
definition in a metamodel) is usually easy as it does not affect
existing models. During the tutorial we’ll update an existing

language with new concepts such as objects, relationships and
properties. For this and all other maintenance tasks the
participants can propose their own changes to be considered
during the tutorial making it more interactive.

If the addition is a constraint then its influence on the
existing models needs to be checked, as there may be models
that do not satisfy the new constraint. Unlike with general-
purpose languages, you can often access all models made with
the domain-specific language, as it has only been used in your
organization. Modern tools can help here by providing
automation and supporting features, e.g. accessing all models
based on the language for instant update, or notifying language
users when the type of change is contextual (i.e. models cannot
be updated automatically but require input from the developer
to consider the right type of change depending on the model
data). For this purpose the language engineer may create a
model checker that is run separately when moving to the new
metamodel, or automatic annotations to highlight the elements
requiring update, either as part of the notation or shown as a
warnings list in editors. During the tutorial we’ll create model
checking reports for language users as well as conduct some
changes directly based on the added constraints.

Adding new notational symbols and generators is usually
safe: They update how existing models are shown or produce
output as defined by the generator. We’ll demonstrate these
update tasks with some existing languages and maintenance
cases.

B. Renaming language elements

Renaming or updating language elements in the metamodel
often has an effect on concrete syntax and perhaps semantics.
Moreover, it always has an effect on existing models. During
the tutorial we’ll rename a language concept in the metamodel
and inspect its consequences to other parts of the DSM
solution, such as constraints, concrete syntax and generators.
We also inspect how model updates can or should be
performed: fully automated in some tools and requiring using
find/replace functions in others.

C. Deleting language concepts

Before deleting anything, the language engineer should first
consider if it is better just to hide the language elements or
make them no longer instantiable, rather than deleting the
concepts and all their instances permanently. This is something
that is normally difficult with textual programming languages
but which modern tools for language development can provide.
This approach allows existing model data to still be valid for
example when generating code — after all, the generator support
for them already exists and still works.

This approach of obsoleting rather than hard deletion allows
language users to see and update design data from the past,
while guiding them not to use the old language concept
anymore. One bonus here is that if we later find that removal of
language constructs was not a good idea we may bring the
removed parts back into the language — and with good tool
support this will also fully restore their instances. During the
tutorial we will remove various kinds of language constructs

from the metamodel and consider the influence of the change
on existing models.

If language engineers are sure about the permanent deletion
we should inspect how the deletion influences existing models.
For example, it could be that the removed object type may have
connections or constraints which then also need to be removed.
Inspection of the influence of these changes is usually a better
option than using brute-force automation for deletion. If the
deletion involves decisions dependent on the model context, the
language engineer can implement model check functionality
similarly to that suggested earlier when adding new constraints.

Removing a language concept should normally also remove
its notation shown in the model. If the removal is related to
notation only it will be automatically reflected in symbols used
in models.

D. Change management and versioning

The tutorial concludes by describing practices for
versioning languages, generators and models. In practice the
types of changes are evolutionary and not revolutionary: If the
language were to change completely, it would be more the case
that language engineers would create a new DSM solution.

If the step in the language maintenance is small it can be
done directly in the production system — checking its influence
before committing the changes and releasing the new version
for all language users. However, if there are major changes
then it is usually better to make them separately along with the
test models — or even with a copy of the same models as in the
production system.

E. Intended outline

The structure of the tutorial is based on the two dimensions
outlined above: 1) the nature of change and 2) the part of the
modeling solution changed. In the beginning we motivate the
participant on the importance of maintenance phase compared
to the initial language development phase. We also describe the
general organization of the change management and show
examples with existing DSM solutions.

Outline:

1. Welcome and motivation

2. Adding new elements
a. Abstract syntax
b. Concrete syntax
c. Semantics
d. Exercises

3. Renaming elements
a. Abstract syntax
b. Concrete syntax
c. Semantics
d. Exercises

4. Removing elements
a. Abstract syntax
b. Concrete syntax
c. Semantics
d. Exercises

5. Change management and versioning

III. OTHER TUTORIAL DETAILS

A. Novelty of the tutorial

We are not aware of any tutorial addressing maintenance of
domain-specific languages along with co-evolution of models
made. Research work has been done on metamodel evolution
but then independently from other parts of the language
definition, like its constraints, notation or generators, or then
independently of the maintenance of existing models.

This tutorial has not been given earlier, but the tutorial
speakers have given tutorials on domain-specific modeling
languages in conferences such as MODELS, ECOOP,
OOPSLA, SPLC and Code Generation.

B. Required infrastructure

During the tutorial exercises for various language evolution
scenario are examined. For their presentation and group

discussion a flip chart or white board would be helpful. We will
also demonstrate the evolution scenarios with example
modeling languages, generators and models. If participants
want to conduct the exercises hands-on with tools they should
bring their computer and preferred tooling with them. For the
rest the authors can provide tooling.

C. Sample slides
Sample slides are provided in a separate file.

REFERENCES

[1] Sprinkle, J., Mernik, M., Tolvanen, J-P., Spinellis, D., “What kinds of
nails need a domain-specific hammer?”, IEEE Software, July/Aug, 2009

[2] Kelly, S., Pohjonen, R., Worst Practices for Domain-Specific Modeling,
IEEE Software, Volume: 26 Issue: 4, 2009

[3] Tolvanen, J.-P., Kelly, S., Model-Driven Development Challenges and
Solutions - Experiences with Domain-Specific Modelling in Industry. In
Proceedings of the 4th International Conference on Model-Driven
Engineering and Software Development, 2016

Agenda

Introduction

Co-evolution of languages and models
Evolution scenario

- Adding new elements and exercises

- Renaming/updating elements and exercises
- Removing elements and exercises

Change management and versioning

B Summary

Co-evolution

B Domain-Specific Languages evolve as the domain
evolves or development needs change

B DSL evolution is more frequent than GPL evolution
® Nobody wants to lose existing work done

Language v1

Language v2

* Models * Models

Evolution scenario

B Two angles:
- Nature of change
- Part of language changed

Nature of change/ NOEEIE
Part of language
Metamodel

Constraints
Notation

Rename/
Update

Generators

Language for the exercises: IoT

B An company makes IoT device and its applications
B The language need to be maintained as:

- the domain (device) itself changes

- we learn more about the domain

- there are new development needs

Nature of change/ NOEEIE
Part of language

Metamodel

Rename/
Update

Constraints
Notation

Generators

19

Domain in this tutorial: IoT device

B Sensors
- altitude, movement (in 3 directions), humidity, location,
luminance, pressure, speed, temperature, time, geofence,
battery status...)

B Actions
- sending SMS, send to cloud, push notification, saving logs

“
I

- .

-

Sample 1: Sauna App

0%

I
L

n:

A

Task 1: Add new language elements

B IoT device supports now also measurement of humidity
- It has new sensor

B Language evolution:
- What parts of the language should be updated?
- What kind of changes are needed?

B Model evolution:
- Does it influence to the models?

- If it does, how the models should be migrated?

23

Task 2: Add new constraints

B The device does not function properly if the temperature
is over 60 degrees Celsius

- We should not allow creating applications that expect
warmer temperature

B |anguage evolution:
- What parts of the language should be updated?
- What kind of changes are needed?
B Model evolution:
- Does it influence to the models?
- If it does, how the models should be migrated?

25

Task 3: Add new notational element

B Notation should indicate if device expects too warm
operational environment

B (code is not generated if too warm)

B Language evolution:
- What parts of the language should be updated?
- What kind of changes are needed?
B Model evolution:
- Does it influence to the models?
- If it does, how the models should be migrated?

27

