
Collaborative Creation and Versioning of Modeling Languages
with MetaEdit+

Steven Kelly
MetaCase

Jyväskylä, Finland
stevek@metacase.com

Juha-Pekka Tolvanen
MetaCase

Jyväskylä, Finland
jpt@metacase.com

ABSTRACT
Language engineering is a collaborative endeavor with several peo-
ple creating and using the modeling languages and related genera-
tors. We describe key features of the MetaEdit+ multi-user version
that support collaborative language engineering, evolution and use.
Several language engineers can create and refine the samemodeling
language at the same time, see each other’s changes, and version
language definitions to version control systems. A key characteris-
tic of MetaEdit+ is continuous integration of language definitions
and of models created with the languages.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering; Domain specific languages; Collaboration in soft-
ware development; Integrated and visual development environ-
ments; Application specific development environments; Software ver-
sion control;

KEYWORDS
Domain-specific language, metamodeling, code generation, version
control, collaboration

ACM Reference Format:
Steven Kelly and Juha-Pekka Tolvanen. 2018. Collaborative Creation and Ver-
sioning of Modeling Languages with MetaEdit+. In ACM/IEEE 21th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MOD-
ELS ’18 Companion), October 14–19, 2018, Copenhagen, Denmark. ACM, New
York, NY, USA, Article 4, 5 pages. https://doi.org/10.1145/3270112.3270132

1 INTRODUCTION
Language definitions follow a similar lifecycle to other software
development artifacts such as code, models, requirements, tests
etc. They are created, edited, and maintained over time, typically
with multiple people collaborating in their editing and reviewing.
We can also identify some characteristics particular to modeling
language engineering, which influence the collaboration:

• Language engineering teams are typically smaller than soft-
ware development teams, usually just one or a few people.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5965-8/18/10. . . $15.00
https://doi.org/10.1145/3270112.3270132

• Changes to the language definition influence existing soft-
ware development work — models made with a language
need to be updated to follow the changed language. The ef-
fort to update existing work should be minimal and existing
model information should not be lost during the language
update — unless there has been a clear objective to do so.

• Customers of language engineers are often professionals in
their own field: software engineers or other experts like test
engineers, safety engineers, insurance specialists, interaction
designers etc.

• Language users are normally more closely involved in the
definition process, and typically more active in giving feed-
back, than customers and users in traditional software de-
velopment projects.

Modeling language engineering tools should support the collab-
oration and management of language definitions to ensure creation
of high-quality languages, their maintenance and evolution along
with models already made with them.

We describe key functionality provided by MetaEdit+ (5.5 SR1,
[4, 8]) for collaborative creation, management and versioning of
evolving modeling languages, generators and models1. We first
introduce MetaEdit+ and its collaboration features and then fo-
cus on language engineering functionality: concurrent collabora-
tion among language engineers, integration of language defini-
tions, management of language engineering rights, tracing language
changes and integration with version control systems.

2 METAEDIT+ AND COLLABORATIVE WORK
MetaEdit+ is a mature, commercial language workbench that sup-
ports graphical, matrix and table-based Domain-Specific Modeling
(DSM) languages. It offers projectional editors with manual and au-
tomatic layout, a generator systemwith debugger, various browsers,
programmable APIs and integration with programming environ-
ments and version control systems. MetaEdit+ has been used to
define hundreds, if not thousands, of modeling languages and code
generators along with tool support2.

For collaborationMetaEdit+ provides amulti-user version, where
users can share and edit the same models at the same time. Their
work is continuously integrated without additionally launched
merging steps or locking out modelers when someone is editing
the model. The modeling history and changes are automatically
recorded and traceable. Fig. 1 shows the tool support for three
alternative ways to view changes made in models (tree, graphical,

1A short video demonstrating collaborative language engineering and versioning to
GitHub is available at https://vimeo.com/279657668 with password: Models2018
2For over 100 public examples, see DSL of the week: https://twitter.com/search?q="DSL
of the week"

https://doi.org/10.1145/3270112.3270132
https://doi.org/10.1145/3270112.3270132


MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark Steven Kelly and Juha-Pekka Tolvanen

Figure 1: Viewing model changes and modeling history in MetaEdit+

and textual). Both individual modelers and multi-user modelers can
version their work to version control systems like Git and SVN.
For a detailed description of combining concurrent collaborative
modeling with any external version control system see [6] and
Sections 3.4–3.5 in the MetaEdit+ 5.5 User’s Guide [8]. MetaEdit+
is available to download at https://www.metacase.com/download.

3 COLLABORATIVE LANGUAGE
ENGINEERING

For language engineering MetaEdit+ provides similar collaborative
capabilities as for language use: Multiple people can jointly define
languages and the language definitions are continuously integrated.
When one or more of the language engineers saves an update to
the definition, the updated language is immediately supported in
the modeling editors.

3.1 Language evolution
An additional requirement for language definition with multiple
users is that changes made in the language definition are automati-
cally reflected to existing models. The design rationale in MetaEdit+
is that existing models must always remain usable as the languages
evolves. A few examples of typical maintenance tasks and how
MetaEdit+ handles them:

(1) Defining and adding new concepts to a language, and adding
new properties to concepts are handled automatically.

(2) Renaming of a language element is automatically reflected to
existing models: they follow the new name. Also renaming in

the abstract syntax is automatically updated to the concrete
syntax and constraints.

(3) Deleting concepts from a language is handled automatically
and non-destructively: new instances of them cannot be
created; the old concepts can be obsoleted, marking their in-
stances visually. Existing generators produce correct output,
allowing language engineers to set their own timetable for
when modelers must have removed instances of old concepts.

(4) To support human migration of the models, language en-
gineers can make checking reports and model annotations
that show which elements require update.

3.2 Collaborative language definition
Fig. 2 illustrates the collaborative features of MetaEdit+ in a lan-
guage engineering scenario among four language engineers. All
language engineers are defining the same language, each focus-
ing on different, yet integrated, parts of the language definition.
First, language engineer Bob refines a language concept ’State’,
adding properties such as ’DisplayFn’ referring to a display defini-
tion. While Bob is working, Jill starts editing the constraints, e.g.
’Alarm’ is allowed to be in only one ’From’ role. In the currently
open window Jill adds a uniqueness constraint for state names:
There should not be two states with the same name. Next, Bob
saves his work, Jill continues defining constraints, and Jim joins in
by starting to define concrete syntaxes. He uses the Symbol Editor
to define notation for the language element ’Alarm’ for which Jill
set constraints. Finally, Jill commits her work and Tim joins in to
define a code generator producing C code from the models. The

https://www.metacase.com/download


Collaborative Creation and Versioning of Modeling Languages with MetaEdit+MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

Figure 2: Collaboration and continuously integrated language definition

Generator Editor shows how it accesses the State information that
Bob refined earlier.

While the above scenario is perhaps extreme with four persons
defining the same language and related generator, the tight collabo-
ration is typical between the roles of language definer and generator
developer. Collaboration in MetaEdit+ is not restricted to language
engineers: language users may also apply and test the languages
while they are being defined. Enabling close user participation is
known to improve the quality and acceptance of results, in language
engineering [5] as in development in general [7].

Collaborative language engineering is also particularly useful
when defining several languageswhich are integrated, sharing some
elements from the metamodel, generator modules or notational
symbols. For example, in the most complex case we are aware of,
MetaEdit+ and its collaborative features have been applied while
defining 24 languages — each focusing on a different view of the
system yet in an integrated manner.

Keeping the language definition integrated is particularly impor-
tant to the process of language engineering and to the quality of
languages. For example, languages whose parts have been defined
separately have been shown to have many errors. For example, the
definition of UML is found to contain hundreds of errors between its

metamodel and constraints [1, 10]. Another example is ArchiMate
[9], whose versions have repeatedly had dozens of errors (see e.g.
error addendums for 2.0 and 3.0). Enabling collaboration between
team members and integration between language definitions, as in
MetaEdit+, helps teams to create better quality languages.

3.3 Collaborative definition of tool behavior
Collaboration in MetaEdit+ is not solely focused on language and
generator definition (as in Fig. 2), but also covers aspects related
to tool behavior, such as dialogs, icons for toolbars and tree views,
and implementing integration with other tools in the tool-chain.
Their editing in MetaEdit+ is collaborative, as with the language
definition. Fig. 3 shows examples of the Icon Editor and Dialog
Editor for a relationship ’Roll’ used in the language. Both of these are
optional customization asMetaEdit+ automatically provides default,
automatically updated icons and dialogs based on the language
definition.

3.4 Language engineering rights
To manage language creation and editing MetaEdit+ provides a set
of options for language engineering rights.



MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark Steven Kelly and Juha-Pekka Tolvanen

Figure 3: Icon and Dialog Editor

Figure 4: Setting rights for language engineers

3.4.1 Metamodeling rights per user. One clear requirement has
been that not all users should be allowed to define languages. For
that purpose administrators can specify which users have access
to language definition tools or can change language definitions.
The former requirement is supported with MetaEdit+ Workbench
providing the language engineering tools. Even if all users have
Workbench tool, administrators can set rights for individual per-
sons, as shown in Fig. 4 where metamodeling rights are granted for
Bob and Jill.

3.4.2 Graphical metamodel rights per project. MetaEdit+ allows
metamodels to be defined graphically. Rights to such graphical
metamodels, as for models, can be assigned per project, per user.

3.4.3 Metamodeling collaboration. The granularity and volatil-
ity of changes in the language definition tends to vary a lot during
the life-cycle of the language: typically a lot of changes in the be-
ginning, less in later phases, yet bigger refinements in the middle

Figure 5: Info on metamodel element ’State’

once the domain changes or there are new generation needs. While
the changes can be done in a single-user version of MetaEdit+ and
exported to the multi-user version, often the refinement changes
are done directly in the multi-user version. For managing language
modifications MetaEdit+ provides four metamodel security levels
which administrators can set. These are:

• Exclusive: the language engineer must be the only user in
the repository. This allows the language engineer to update
all the models without considering language users’ work
at the same time. An example is updating models with the
API. It also protects users from the sometimes disconcerting
effects of seeing the language changing under their feet.

• Single: there can be only one language engineer in the whole
repository at a time, but any number of simultaneous lan-
guage users. This allows language engineers to work on
their own languages without considering other language
engineers’ work.

• Project: only one language engineer can access a specific
project, but any number of language users may work in the
project, and other language engineers may work in other
projects. This is typical when language definitions are shared
for different language engineers and their projects.

• Type: any number of language engineers and language users
can access all projects and types, and saving a change to a
particular language element locks it first.

3.5 Managing language definitions
In addition to direct language definition, MetaEdit+ provides tools
for managing and browsing the language definitions as well as a
shared symbol library for reusing notational elements. The Meta-
model Browser and Type Browser allow language engineers to view,
access and remove elements of the languages. They also provide
tools to trace among language elements, e.g. to inspect where a
particular language element is used, or what elements are used by
it. Fig. 5 shows such information for the ’State’ element defined in
Fig. 2. This concept is used in the ’WatchApplication’ language in
the ’Digital Watch’ project. It is used in bindings of relationships,
as one of the contents of WatchApplication graphs, it is referenced
in constraints, and in a decomposition structure for nested states.
’State’ also uses four other language elements, namely ’DisplayFn-
Ref’, ’Documentation’, ’Name’ and ’TimeUnit’. For all these items
further similar traces can be launched from the Info tool.



Collaborative Creation and Versioning of Modeling Languages with MetaEdit+MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

Figure 6: Creating a new version of the language definition

4 VERSIONING A DSM SOLUTION
A DSM solution consists of many parts, e.g. individual languages
of the whole modeling solution, or for a given language, its meta-
model, generators, individual notational symbols, etc.. Rather than
split these interlinked and interdependent parts and version them
separately, MetaEdit+ enables to treat them together. This makes
versioning easier and ensures consistency among the parts of the
language across versions.

Versioning of a DSM solution follows the same principles as ver-
sioning of models. If the metamodels are defined using a graphical
metamodeling language [8], its management is identical to ver-
sioning and managing models, with history and viewing changes
graphically, textually or with a tree (see Fig. 1).

Fig 6. shows how a new version is created and saved to an ex-
ternal version control system. The Language engineer has entered
a version number and version comment. Pressing ’Save Version’
commits the changes made to the MetaEdit+ repository and push
the version to the chosen version control system. In addition to
versioning the language definition, the versioning function also
adds a textual human-readable description of the language, the gen-
erator source code, and the notation library symbols as SVG. In our
example, Fig. 7 shows the view from GitHub after Save Version in
MetaEdit+: the metamodel directory includes these diffable forms
of the language definition for inspection with standard GitHub
tools. Note that models are versioned too, as the change in the lan-
guage definition also influenced them. This is because the language
engineer added a Boolean property ’Long press’ to ’Event’ roles,
and so all models with instances of ’Event’ would get a new ’Long
press’ property with the default value.

The collaboration and versioning approach of MetaEdit+ is made
to ensure continuous integration and consistency: within the lan-
guage definition as well as between the model versions. Since both
models and metamodels are versioned together, their internal con-
sistency can be managed better than if versioned as separate parts.
In this way MetaEdit+ can ensure that any model version is always
used with the correct language definition version. However, when
necessary a different version of the metamodel can be checked out
and applied to the models. MetaEdit+ updates the models automat-
ically, following the same behavior as for language evolution.

Figure 7: Inspecting a versioned DSM solution in GitHub

5 RELATEDWORK
In GMF-based editors, a change to one part of a GMF language
definition may often invalidate another part, breaking editors [3].
Perhaps worse, many changes to GMF language definitions will
break existing models [2]. The situation is similar in many other
tools. A change in GMF or Microsoft DSL Tools version also often
invalidates an existing language definition, breaking editors.

6 CONCLUSIONS
MetaEdit+ supports collaborative engineering, evolution and use
of languages. The multi-user environment makes sure all language
engineers’ work is integrated, and tooling updates automatically.
There is no need to manually fetch others’ changes, deal with diff,
merge, and conflicts, or think about any of these details when ver-
sioning. Sincemetamodels are integrated withmodels, the approach
also integrates language versions with model versions. Where inte-
gration with a version control system is desired, simply entering
a version number and comment is enough. This makes language
definition, use and versioning easier, and collaboration enjoyable.

REFERENCES
[1] H. Bauerdick, M. Gogolla, and F. Gutsche. 2004. Detecting OCL Traps in the UML

2.0 Superstructure: Experience Report. In Proceedings of Unified Modeling Lan-
guage - Modeling Languages and Applications (UML 2004), LNCS 3273, Springer.

[2] J. Di Rocco, D. Di Ruscio, A. Pierantoni, and L. Iovino. 2015. Supporting Users to
Manage Breaking and Unresolvable Changes in Coupled Evolution. In DSM 2015,
SPLASH. http://www.dsmforum.org/events/dsm15/Papers/DiRocco.pdf

[3] J. Di Rocco, D. Di Ruscio, H. Narayanankutty, and A. Pierantonio. 2018. Resilience
in Sirius Editors. Models and Evolution Workshop, MODELS.

[4] Steven Kelly, Kalle Lyytinen, and Matti Rossi. 1996. MetaEdit+: A Fully Config-
urable Multi-User and Multi-Tool CASE and CAME Environment. In Proceedings
of CAiSE’96. Springer.

[5] Steven Kelly and Risto Pohjonen. 2009. Worst Practices for Domain-Specific Mod-
eling, IEEE Software, July/August 2009.

[6] Steven Kelly. 2018. Collaborative Modelling with Version Control. In: M. Seidl, S.
Zschaler (eds) Software Technologies: Applications and Foundations. STAF 2017.
Lecture Notes in Computer Science, vol 10748. Springer.

[7] J.D. McKeen, T. Guimaraes, and J.C. Wetherbe. 1994. The relationship between
user participation and user satisfaction. MIS Quarterly 18, 4, pp. 427-451.

[8] MetaCase. 2018. MetaEdit+ 5.5 User’s Guide. Retrieved August 22, 2018 from
http://www.metacase.com/support/55/manuals

[9] The Open Group. 2018. ArchiMate Specification, 2.0.1, 3.0.1. Retrieved July, 2018
from http://www.opengroup.org/subjectareas/enterprise/archimate

[10] C. Wilke and B. Demuth. 2011. UML is still inconsistent! In Proceedings of OCL
and Textual Modelling workshop.

http://www.dsmforum.org/events/dsm15/Papers/DiRocco.pdf
http://www.metacase.com/support/55/manuals
http://www.opengroup.org/subjectareas/enterprise/archimate

	Abstract
	1 Introduction
	2 MetaEdit+ and collaborative work
	3 Collaborative language engineering
	3.1 Language evolution
	3.2 Collaborative language definition
	3.3 Collaborative definition of tool behavior
	3.4 Language engineering rights
	3.5 Managing language definitions

	4 Versioning a DSM solution
	5 Related work
	6 Conclusions
	References

