
Effort Used to Create Domain-Specific Modeling Languages
Juha-Pekka Tolvanen

MetaCase
Jyväskylä, Finland
jpt@metacase.com

Steven Kelly
MetaCase

Jyväskylä, Finland
stevek@metacase.com

ABSTRACT
Domain-specific modeling languages and generators have been
shown to significantly improve the productivity and quality of
system and software development. These benefits are typically
reported without explaining the size of the initial investment in
creating the languages, generators and related tooling. We compare
the investment needed across ten cases, in two different ways, fo-
cusing on the effort to develop a complete modeling solution for a
particular domain with the MetaEdit+ tool. Firstly, we use a case
study research method to obtain detailed data on the development
effort of implementing two realistically-sized domain-specific mod-
eling solutions. Secondly, we review eight publicly available cases
from various companies to obtain data from industry experiences
with the same tool, and compare them with the results from our
case studies. Both the case studies and the industry reports indicate
that, for this tool, the investment required to create domain-specific
modeling support is modest: ranging from 3 to 15 man-days with
an average of 10 days.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Model-driven software engineering;

KEYWORDS
Domain-specific language, modeling, code generation, development
cost
ACM Reference Format:
Juha-Pekka Tolvanen and Steven Kelly. 2018. Effort Used to Create Domain-
Specific Modeling Languages. In ACM/IEEE 21th International Conference
on Model Driven Engineering Languages and Systems (MODELS ’18), October
14–19, 2018, Copenhagen, Denmark. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3239372.3239410

1 INTRODUCTION
Domain-Specific Languages (DSL) and Modeling (DSM) have been
shown to significantly improve the productivity and quality of
software development in various industries, such as automotive,
consumer electronics, signal processing, telecom, solar power sys-
tems, military etc. [4, 15, 27, 32]. These improvements are possible

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’18, October 14–19, 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4949-9/18/10. . . $15.00
https://doi.org/10.1145/3239372.3239410

because of two characteristics. First, a DSL can raise the level of
abstraction beyond programming by specifying the solution in a
language that directly uses concepts and rules from a specific prob-
lem domain. Second, generators can produce fully functional code
from the high-level specifications [11, 27]. History has shown that
each time the level of abstraction has been raised with automation,
the improvements have been significant.

Typically the benefits from DSM or DSLs are reported without
detailing the size of the original investment: How many people and
how much time did it take to create the modeling languages, their
generators, and tool support. In this study we address this omission
by comparing the effort to create such complete DSM solutions
across ten cases.

We investigate the size of the investment by analyzing language
creation effort in two complementary ways: by conducting case
studies ourselves, and by analyzing reported industry cases. We
focus on languages created and used in real-world situations. These
language implementations are complete and ready to be used. Using
a case study research method we collect data on the implementa-
tion effort in detail in two cases, and with a literature review we
inspect publications from eight industrial language creation projects
that also reported the initial development effort. The results of the
comparison across all cases show that with appropriate tools, the
development effort is modest — in particular when compared to
the benefits achieved.

After describing the research methods and subject of this study,
we report the case studies and industry experiences, and compare
the effort across them. We then conclude by examining other pub-
lished comparisons of language development effort, and integrating
our results into that body of evidence.

2 INVESTIGATING LANGUAGE CREATION
EFFORT

Creating DSLs is said to be hard [15], and to require time and re-
sources — in particular when creation of tooling support is included
[19]. Unfortunately the vast majority of the studies on creating mod-
eling solutions do not disclose much about the effort. Investigating
the creation of DSLs is also challenging as it is hard to obtain data
that is comparable and could be generalized. First, there is the ob-
vious difference between the domains, making it hard to compare
language creation projects. Second, there are differences in the ex-
perience of the language developers. Third, tools and technologies
applied for language development influence the effort needed. In
this study we exclude the influence of different tools by focusing on
language creation efforts within the same tool, MetaEdit+ [9, 17].

https://doi.org/10.1145/3239372.3239410
https://doi.org/10.1145/3239372.3239410

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Juha-Pekka Tolvanen and Steven Kelly

2.1 Subject of the Study: DSM Solution
By language creation we mean creating a complete modeling solu-
tion that can be given to language users. Typically the following
parts need to be specified for a complete DSM solution:

Metamodel: Language creation almost always starts from iden-
tifying the language concepts. The bare concepts are fleshed out
with their properties and relations to form a language. The resulting
language is then formalized into a metamodel or a grammar in a
tool.

Constraints: In addition to the language concepts, there are
also a number of rules and constraints that models should follow.
Defining them aids in prevention and early identification of mod-
eling errors, speeds up specification work, and makes the models
applicable for generators, checkers, simulation etc. These rules
are typically part of the metamodel or defined separately with a
language expressing constraints.

Notation gives a representation for humans to create, edit and
read the specifications. Typically, a symbol is defined for each of
the main concepts in the modeling language. Additionally there
can be notational elements to show errors, incompleteness, provide
reading aids etc. Often the notation is a diagrammatic represen-
tation, but can also be based on other representational paradigms
like matrices or tables. In this study we focus on domain-specific
modeling and exclude solely textual representations and extensions
of programming languages — along with related syntax-oriented
text editors.

Generators read the models and transform them into code or
other outputs. Building a generator is about defining how model
elements are mapped to code or other output. Generator building
also includes making sure the resulting code is ideal: optimization,
using patterns and coding styles, and integration with existing
libraries and legacy code.

Tooling and tool-chains: Depending on the tool being used,
in addition to defining the language’s metamodel, constraints and
notation, it may be necessary to provide extra information or code to
implement modeling tool functionality. Generators too will depend
on tooling, and need to be integrated with other tools in the chain:
the compiler, build process, requirements management, version
control, testing etc.

In addition, the language creator can make ancillary material
over and above what is necessary to provide tool support for the
language: training material, tutorial examples, guides etc. As these
are similar to those for any other task or technology, and the set is
rather open-ended, we will only consider them in passing here.

During the literature review we did not find any publications
that detailed the implementation effort for all of the above parts.
The selected case study research method allows us to do that.

2.2 Research Methods
To obtain a more comprehensive view on the language development
effort we apply two research methods: case studies and review of
industry reports.

2.2.1 Case Studies. With a case research method we collect de-
tailed data on two DSM creation projects: one addressing creation of
applications for an embedded device and another implementing an
enterprise architecture language called ArchiMate [28]. These cases

were selected as they are of realistic size and their implementation
can be made available without any restrictions. These languages
are also different in respect to their purpose, and in the way their
existing specification is presented, particularly when addressing
constraints and generators.

As in all research, a case study must be planned to obtain sci-
entific knowledge, and to overcome or minimize the limitations of
the research approach followed. Our research objective is to extract
information in detail about the development effort for creating the
different parts of the whole DSM solution.

During the case studies the language creation followed the typi-
cal iterative approach [11, 33], defining the language in small parts
and testing the resulting definition by using the language with
practical examples. The language implementation was performed
by one engineer, as in most other industry cases (see Section 4),
with some assistance from a language user testing it. The language
engineer was the same in both cases, and was not familiar in detail
with the domains but learned about them while implementing the
DSM solutions. The tool used for defining and using the DSM solu-
tion was already familiar. Language support was tested by asking
language users to apply it, by checking the result with reference
applications and by using certification documents when available.

In both cases the modeling support was implemented completely,
covering the metamodel, notation and semantics along with sup-
porting tooling. Both resulting DSM solutions are ready to be used,
along with integrated help and sample models.

During the implementation of the language support we collected
data in two main ways: Keeping a manual record of working hours
and using log data provided by the tool. The latter is more precise as
it is collected automatically, but it did not provide data on all parts
of the DSM solution: MetaEdit+ can provide log information when
a particular language concept was created (timestamp in seconds),
when the language definition effort started and when it was stopped
by saving the work (times of transactions). Also the timestamps
when generators were created or changed can be inspected within
the tool.

In addition to the automatically collected logs, the language
engineer can version the changes — covering the models and the
metamodel. Both automatically collected and manually created
versions were used to obtain a detailed view on the development
times. MetaEdit+ does not automatically collect log information
related to the notation and therefore the effort related to creating
notations is based on manually kept records.

Others can repeat the case studies by collecting the data on the
effort to implement languages following the same elements as we
did. The scope of future studies can also be extended for example
by implementing other languages or by using different tools.

2.2.2 Review of Industry Reports. In addition to case studies,
we reviewed publicly available cases from various companies and
domains. This allowed us to compare the findings from the case
studies with industry reports and obtain a richer picture of the
language creation effort. To avoid the authors’ influence as individ-
ual language engineers, we excluded industry reports where the
authors had been directly involved, whether more generally in the
language creation process, or more concretely in actually using
MetaEdit+ to implement the DSM solutions.

Effort Used to Create Domain-Specific Modeling Languages MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Investigation of industry experiences was harder than expected
as companies usually do not report about their investments or
effort even on a general level — e.g. only a few among the 50
cases at [6]. This is partly understandable as companies do not
want to share data on their investments, or necessarily even to
spend time collecting the data. Where data is provided, it may be
expressed in a way that prevents identifying the effort used for
creating the language with supporting tooling. For example, at
Ericsson Modeling Days a talk [1] indicated that the company has
worked for more than 5 years on introducing a particular modeling
tool, or has 35 people working on creating modeling tools [3].

We focused on papers and presentations describing a particu-
lar DSM solution created within a company, where details about
the development effort were provided. The reports were selected
from search engine query results using domain-specific model-
ing or domain-specific and model as keywords, and focusing on
reports which have a clear industry relationship. Therefore for ex-
ample cases performed solely by researchers were excluded, even
if published in industry tracks of conferences. We noticed that aca-
demic publications describing language creation tend to focus on
the language itself, its use, or related tooling but seldom include
information about the actual development effort. It is also common
that the language is not necessarily defined completely (e.g. only
a metamodel) as the focus has been on studying certain aspects
rather than providing a complete and ready-to-use DSM solution.
Since we focused on one tool to control for the influence of tools,
which earlier research has shown can be substantial [10, 12, 13], the
selected literature was restricted to MetaEdit+ based DSM solutions.

3 LANGUAGE DEVELOPMENT EFFORT IN
TWO CASES

The language developers had access to all documents related to
the domain and/or language. For the first case, addressing an In-
ternet of Things (IoT) device, identifying the domain concepts was
quite straightforward as the device had a fixed set of sensors and
functionality — all detailed in the device documents. Putting these
concepts together into a language was relatively simple: a domain-
specific state model approach seemed appropriate. Notation, model
checking rules and generators needed to be identified and devel-
oped. The code generator was tested with the available reference
applications.

The implementation of the ArchiMate metamodel followed ex-
isting specifications by The Open Group and thus shows a case in
which almost all requirements are available. Thus, it is similar to
other studies made to compare the effort where a known language
is defined (e.g. [13, 21]). Implementation of ArchiMate was tested by
creating reference models and by using the available certification
documents. We did not, however, follow the certification process
as that would be costly, and to our surprise the certification [30]
did not cover the implementation in detail, e.g. omitting the large
number of rules related to the ArchiMate language.

3.1 IoT device
The first language we implemented targets the development of ap-
plications for an IoT device. Rather than have developers manually
write the application code covering the logic, reading sensor data,

and communicating with the outside world, we created a DSM
solution consisting of two integrated modeling languages and a
JSON generator. An application developer can therefore design the
application using the concepts of the IoT device, such as its sensors
and services, and produce complete code from the models which
can then be executed in a device1.

The core language is based on a state machine that is extended
with services and rules of the device. Sensors (movement, pressure,
luminance, GPS, temperature etc.) provide various events and data
along with some internal housekeeping functions like checking bat-
tery level and charging status. The action part of the state machine
covers various communications methods with which the device
can interact with the outside world (like sending messages to the
cloud or SMS to a phone). Fig. 1 shows a small illustrative example
developed with the implemented DSM solution: a sauna application
that uses temperature and humidity sensors. When the tempera-
ture is over 60◦C, the application checks the humidity and sends
the information to the given phone number. The example is small
as only 2 out of over 10 possible sensors are used, and only SMS
sending is used. The figure also shows the modeling environment
for creating the models, checking them and running generators.

While the first language focuses on implementing a single appli-
cation, the second IoT language, integrated with the first, allows
developers to integrate several applications or modules. This helps
to address scalability and manage various models as in Fig. 1.

3.1.1 Parts of the implemented DSM solution. The completely
defined metamodel contains 74 elements. As a point of reference,
this is about one third of the size of the metamodel of UML 2.5
[20] in the same metamodeling language in MetaEdit+. In addition,
39 constraints were defined in the metamodel. These include how
objects can be connected with each other by relationships, how
many participants there can be in such connections, and how dia-
grams can be organized to handle the design of large applications.
The most common kind of constraints were regular expressions
to ensure that entered property values were correct within the
domain, e.g. legal values for humidity, pressure etc., or to make
providing a value mandatory. These constraints ensure that the
data entered into the model is legal and so can be directly used in
code generation. While creating the metamodel and constraints,
the metamodel concepts were annotated with descriptions where
necessary, so that the modeling tool can provide an integrated help
system for the language users.

For the notation, 54 symbol elements were defined. Many of the
notational elements were conditional showing different symbol
elements depending on the design data entered in the model. In
addition, 9 small symbols were defined to be used as icons. These
icons are not mandatory — MetaEdit+ will automatically provide
icons based on the main symbol — but make the language concepts
easier to identify from the editor’s toolbar from which the elements
are selected. These icons are also used to differentiate the concepts
in various views and browsers.

Generators were defined for two purposes: 1) for checking the
rules and constraints that were not expressed in the metamodel —
mostly incompleteness, like a missing start state or elements that
are not connected with the rest of the designs, 2) for producing
1https://www.thingsee.com/

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Juha-Pekka Tolvanen and Steven Kelly

Figure 1: IoT device language in use.

JSON code in a file to be uploaded to the device. For checking, only
one generator module (21 LOC in MERL, the MetaEdit+ Reporting
Language) was needed because of the work already done in the
constraints, whereas the JSON generator consists of 28 generator
modules (556 LOC).

Based on these definitions MetaEdit+ provides tool functionality
for modeling, managing models, collaborative editing, checking
model validity and generating the code. The implementation of
the complete language along with its generators is available from
https://www.metacase.com/download in the ’IoT’ example project
in MetaEdit+.

While the language can be considered complete, it could be ex-
tended with additional support and guidance mechanisms. These
could include examining the specification to inform if the designed
use of sensors consumes battery, etc. Nevertheless, we check some
of these when relevant for safety, like that the device is not planned
to measure temperatures higher than those for which the manu-
facturer gives a guarantee. This capability is a typical example of
providing domain-specific knowledge directly in the DSM solution.

3.1.2 DSM implementation effort. The total implementation ef-
fort for creating a ready-to-use IoT modeling support was 3.8 man-
days — calculated based on 8-hour work days. The implementation
effort spent on different parts of the whole DSM solution is illus-
trated in Fig. 2. Implementing the metamodel and its constraints
and checks took just under one working day. To be precise, based
on the automatically collected logs the metamodel was defined

Figure 2: Man-days used to create different parts of the IoT
solution

in 5.8 hours. The definition of the 39 rules expressable directly
as MetaEdit+ constraints took 1 hour, with an extra 1 hour for
those that required generators for checking model completeness
and correctness.

The notation covering symbols for the objects, relationships and
roles expressed as lines connecting the objects took 5 hours.

Implementing the generator producing JSON took 17 hours. The
correctness of the generator was checked by modeling a few sample
applications provided by the manufacturer, and comparing the
generated code against the provided reference code from the same
applications. Later the generator was tested in detail against a
large number of small reference applications following a test-driven

Effort Used to Create Domain-Specific Modeling Languages MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

approach. The effort to create the test models as detailed in [31] is
not included in the generator development effort.

Additional effort to implement the tool support for the lan-
guage was almost zero, as MetaEdit+ provides the modeling editors,
browsers, help system etc. needed based on the definitions. The
only tooling related part that was needed was defining the icons
used for some of the modeling elements. These were defined in
less than an hour making the various language concepts easier to
distinguish from each other with a small icon symbol in toolbars
and browsers when the default symbol for the notation was not
considered adequate.

3.2 ArchiMate
The second language is ArchiMate by The Open Group [28, 29]. The
focus of ArchiMate is the representation, communication and anal-
ysis of enterprise architecture. The language aims to acknowledge
concerns from a variety of stakeholders covering both business and
IT. While architects may create the models, everybody should be
able to read and comment the models. For this purpose ArchiMate
offers a set of entities and their relationships along with suggested
icons and other notational elements. Fig. 3 illustrates the use of
ArchiMate in the implemented modeling solution when specifying
business processes, services and roles related to insurance claims.

ArchiMatemodels are a combination of traditional datamodeling
with associations and aggregations, along with process modeling
with flows, triggers and access relationships. A particular feature of
ArchiMate is that it offers a layered architecture for the models —
Business, Application and Technology layers — along with special
relationships to relate the elements across the layers. For example,
in Fig. 3, the yellow upper part illustrates the Business layer and
the four blue elements in the bottom the Application layer. Here
two application services, Customer Data Management and Payment
Processing have Serving relationships to elements in the Business
layer. The language does not have strict semantics behind the con-
cepts and does not provide real guidance for creating the models:
with ArchiMate, the same idea can be modeled in numerous ways.

In addition to the layers, the language provides various addi-
tional concepts to describe factors related to motivation, resources
and work results. Finally, as the models illustrated in diagrams
can quickly become large and there is a need to show different
views to different stakeholders, ArchiMate suggests a set of specific
viewpoints to the models.

For the implementation of ArchiMate modeling support we thus
had a clear specification and there was less need to consider differ-
ent choices or notational symbols than for the IoT case. Also, as
ArchiMate does not support code generation, there was no need to
implement generators other than for model checking. Originally,
the ArchiMate implementation was created with integration to ex-
isting MetaEdit+ metamodels like BPMN for process modeling and
ER for data modeling. For the case study purpose these extensions
and integrations were excluded and the data collection focused only
on the purely ArchiMate parts.

3.2.1 Parts of the implemented DSM solution. The implemented
metamodel contains 125 elements. These include 24 abstract el-
ements used to classify modeling elements as in the ArchiMate

specification. The abstract elements of the metamodel are not di-
rectly visible to language users and are not mandatory for creating
modeling support. Also the specification of ArchiMate does not use
them when defining the constraints.

Constraints are a notable feature of ArchiMate and in particular
the vast number of them ([29], Appendix B2): there are over 10,000
rules in the specification and almost all relate to defining which of
the 11 relationships types are legal among the 61 objects types.

As the architecture models are not used for generating code,
there are no real constraints on how the textual descriptions are
entered to the models or even if some data is mandatory. Similarly
to the IoT case, descriptions of the language concepts were added to
themetamodel so that themodeling tool can provide integrated help
while modeling. These covered guidance for all the main modeling
elements like its objects and relationships.

For the notation part, 89 symbols were defined, trying to closely
resemble the original specification. Most of these symbols are rect-
angles with a special icon indicating the type of the object and
recommended color coding for the layers. Since the specification
of ArchiMate includes suggested icons, these too were made, for
display in toolbars and browsers. In total 77 icons were defined.

Generators were defined for checking purposes only, addressing
some of the constraints that could not be defined in the metamodel.
These included how junction concepts can be used to express re-
lationships between more than two elements, grouping modeling
objects, and checking that elements connected with composite re-
lationships are legal. These 3 generators were small (42 LOC in the
MetaEdit+ MERL language).

Based on these definitions MetaEdit+ provides editors for col-
laborative architecture modeling, browsers and model manage-
ment tools, and other expected modeling capabilities. Also in terms
of view management, the in-built capabilities of having different
views to the same model or single diagram can be applied. The
same element can also be shared among different views. In this
way data can be displayed appropriately for different stakehold-
ers, or a particular layer can be hidden from the model (e.g. if the
focus is on the application layer and others need to be hidden).
The implementation of the ArchiMate support is available from
https://github.com/mccjpt/ArchiMate.

For reporting and publishing the architecture models as Word or
HTML, existing predefined generators of MetaEdit+ could be used.
MetaEdit+’s existing generic generators for model checking and
calculating metrics could also be used on the ArchiMate models.

3.2.2 DSM implementation effort. Implementation of the Archi-
Mate modeling solution took almost 4 man-days. This effort was
divided into different parts of the language definition as illustrated
in Fig. 4. The metamodel was defined in four sessions — in total 12.1
hours. The number of constraints for relationships is huge: 10,760
in total. As adding them manually to the metamodel would be a
massive effort, we automated this part of language definition using
the generator system of MetaEdit+. The definition of the relation-
ship table ([29], Appendix B) was parsed and binding rules were
generated to the metamodel. The few remaining rules that dealt
with model structuring into hierarchies were defined manually.
The effort to define the generator that parsed the simple textual
2http://pubs.opengroup.org/architecture/archimate3-doc/apdxb.html

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Juha-Pekka Tolvanen and Steven Kelly

Figure 3: ArchiMate in use.

Figure 4: Man-days used to create different parts of the
ArchiMate modeling support

rule data and output the constraints in the XML import format for
MetaEdit+ metamodels was 6 hours.

While we focus in this study on the initial creation phase, the
automated creation of language constraints can be relevant during
themaintenance. For example, the ArchiMate language is created by

the OpenGroup in partial definitions without using test or reference
data to ensure its correctness. Therefore its earlier versions have
had many errors. For example, the latest major release, ArchiMate
3.0 [28], had hundreds of errors in its relationship definition, and
version 3.0.1 [29] provided corrections to these. With the automated
constraint definition capability, all the constraints of the newer
version could be updated to the metamodel by simply running the
generator.

The notation, covering symbols for the objects, relationships and
roles as well as the icons, was defined in 8 hours. To avoid creating
a large number of very similar notational elements, we used the
symbol library and template mechanism provided by MetaEdit+.
Fig. 5 illustrates this in the definition of the notation for the Tech-
nology Interface element. The template in the top right corner —
shown with dotted lines and selected in the MetaEdit+ Symbol
Editor — retrieves the correct icon from the symbol library and
positions it correctly while keeping it from scaling with the rest of
the symbol. The same icon is then used for other interface elements
of ArchiMate, namely Application Interface, Technology Interface
and an abstract External Active Structure Element. This pattern for
defining the notation was repeated for other ArchiMate elements
like its various functions, services and collaborations. In total 29

Effort Used to Create Domain-Specific Modeling Languages MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Figure 5: Defining notation for Technology Interface.

notational symbols were reused. This not only made creation of
the notation easier but helped to ensure that icons are used in a
consistent manner. Since there were no generators, and icons cre-
ated for modeling elements could be used directly as icons for the
toolbar, there was very little additional development effort needed:
1.5 hours in total.

4 DEVELOPMENT EFFORT IN REPORTED
INDUSTRY CASES

While our two case studies focused on languages of a realistic
size, they were developed in a controlled environment without a
typical industry setting, which would normally include reporting,
resource allocation and other organizational factors. To compare
our experience with others and to examine the development effort
in other industry cases we inspected public data — a paper or a
presentation — given by other language engineers. We included
the cases where the effort was clearly stated, in the paper or in the
related presentation, and the language focused on a specific task.
So cases where companies had developed multiple generators have
been left out — unless they have separated the data on the effort to
make comparison possible.

Fig. 6 summarizes the implementation efforts for cases detailed
below. In all cases the actual language development — and use
— was performed with the same tool, MetaEdit+. This excludes
the impact of tooling from the comparison. In 4 of the 8 cases,
the language development was performed by the companies’ own
language engineers, and they also measured the DSM creation time.
In 3 cases (Heating remote control, Military radio systems testing,
Blood separators), the main language engineering effort was by an
external consultant. In 1 case (Voice control), the main language
engineering effort was by a consultant from MetaCase (but not one
of the authors). As with our case studies, in all the industry cases
the total language engineering team was small: 1 or 2 people.

Figure 6: Man-days used to create DSM solutions in different
cases

4.1 Review of reported industry cases
4.1.1 Touch screen controller at Panasonic [25]. The language

focuses on developing applications for home automation in an
embedded device. A generator reads the models created and pro-
duces C and HTML for a Linux based touch screen. Panasonic
reported their total development effort as 16 man-days, without
differentiating the effort on the various elements of their DSM so-
lution. However, later development of a second generator targeting
a microcontroller using the same models was reported to take 3
man-days. This generator produces C code with build/flash/run
workflow automation.

4.1.2 Sport watches at Polar [14]. The DSM solution focuses
on embedded applications in a sports watch. The models specify
the application UI, navigation and localization, generating C code
which is typically about half of the total code in a final product.
Polar reports having used 60 man-hours for developing their DSM
solution.

4.1.3 Car infotainment system by OEM [[2], talk at Leipzig]. A
car manufacturer developed a DSM solution for specifying end-user
applications for infotainment systems. The models cover static UI
elements, UI logic and navigation and calls using the services (radio
etc.). The generator produces Java for simulation and concept de-
sign. The OEM invested 3 man-weeks in total for creating the DSM
solution: 1 week for the language and 2 weeks for the generator.

4.1.4 Voice control systems for home automation [11]. The sup-
plier focused onmachine-to-machine communication for the energy
and home automation sector. The DSM solution focused on speci-
fying voice commands and related control logic used via telephone
lines. The DSM solution was implemented in 3 man-days during a
two-day workshop with a MetaCase consultant and an expert of the
domain for the domain analysis. The first day of the workshop pro-
duced a language that was too generic to permit code generation,
resulting in a need to start from scratch under time pressure. The
second attempt took 1.7 hours for the modeling language, and the
generator producing assembler code for an 8-bit microcontroller
took just over 2 hours.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Juha-Pekka Tolvanen and Steven Kelly

4.1.5 Remote control for heating systems at Ouman [23]. The
DSM solution specifies a control application for mobile phones,
with a generator producing Python. An external consultant de-
veloped the solution in collaboration with one person at Ouman.
The consultant made the implementation alone and a person at
Ouman tested it to provide feedback. The development effort by
the consultant was 2 man-weeks.

4.1.6 High-level synthesis for virtual platforms at Profound [22].
The DSM solution specifies the block structure for image processing
systems and generates SystemC for high-level synthesis. For creat-
ing the first version, Profound used 4 man-days for the metamodel,
3 days for the notation and 5 days for the SystemC generator. The
implementation was by one person who also mastered the domain
of the synthesis.

4.1.7 Testing military radio system at Elektrobit [24]. For testing
VoIP networks and related terminals, a DSM solution specifies test
cases and larger-scale test logic. The generated target code is the
TTCN3 test scripting language. The DSM development effort was
2 man-weeks. One additional week was used later to implement
feedback functionality from the test environment back to the mod-
eling tool, annotating models to visualize the execution of tests.
The language testing was done later by another person creating an
existing reference solution as a test case.

4.1.8 Blood separators by a supplier [5]. Amedical device manu-
facturer has a product line of blood separators. As a part of develop-
ment solution, including hardware and software, a consultant from
a MetaCase partner developed a modeling language for the product
line. Generators were developed to produce IEC61131 program code
and configuration code. The consultant reports an investment of
one man-week to create the DSM solution.

4.2 Comparing and combining the cases and
industry reports

One main difference between the two cases and industry experi-
ences is that in the latter the domain knowledge has already been
available — at least the language engineers have had past experi-
ence of the problem and implementation domain, whereas in both
case studies the domains were unfamiliar. Conversely, the cases
were performed by an experienced language engineer, familiar both
with language engineering in general and MetaEdit+ in particular.
Similarly, the cases started from an already existing set of language
concepts, whereas the industry experiences first had to identify the
domain concepts.

The industry cases show an average of just under 2 weeks’ de-
velopment effort to create a DSM solution — 9.8 days, ranging from
3 days to 16 days with a standard deviation of 4.6 days. Our two
case studies with their 4 man-day development efforts fit into this
range from the industrial cases — albeit at the lower end. The in-
dustry cases using purely companies’ in-house resources took on
average 12.6 days, whereas those using an external consultant took
on average 7.0 days. The 3 cases performed by MetaCase language
engineers (1 from industry and 2 reported here) averaged 3.4 days.

Although by no means certain, these figures would seem to
support a hypothesis that the most experienced language engineers
may be a few times faster than a first-timer: a significant ’transfer

of learning’ effect, indicating that there are domain-independent
elements that can be learned once and applied more efficiently the
next time around. The question remains open as to how much of
this is generalised learning about language creation, and how much
is learning MetaEdit+. In any case, a first-timer both at creating
a language and using MetaEdit+ is able to create a language on
average in 2–3 man-weeks.

Unfortunately most of the industry cases found do not break
the development effort down into the different parts of the DSM
solution. The available data indicates that when implementing a
DSM solution with a generator for one output language, building
the generator took about 40–60% of the total effort (42% in High
level synthesis, 54% in the succesful second attempt at Voice control
systems, 55% in IoT). Excluding generators, the notation took about
30–45% of the total time to build the language (29% in ArchiMate,
36% in IoT, 43% in High level synthesis).

Looking at the various phases and artefacts, perhaps the largest
variation between cases is on the earliest stages: domain analysis,
deciding the boundary and level of the language, and coming up
with themain idea of the language. No separate times were gathered
for these tasks, and indeed they are often spread across the meta-
modeling and notation phases. As seen in the Voice control systems
case, even a relatively experienced language engineer can choose a
wrong path and be forced to restart from scratch. Having a tool that
allows quick, incremental building of a metamodel during these
early stages can help. Making things concrete reduces the time lost,
allowing early identification of problems and experimentation with
various approaches.

The size of the resulting language had a surprisingly small effect
on the effort required. We have data on language size from three of
the industrial cases (sadly mostly not public). Although more data
would be needed, it seems that effort increased less than linearly
with size. Even with the largest language, nearly twice as large as
UML, there is certainly no evidence of slowing caused by hitting
problems of scalability or complexity. On the larger languages it
seems that patterns develop for extending the language further: a
new concept is often quick to add, being one more member of a set
of similar existing concepts.

5 OTHER RESEARCH COMPARING EFFORT
We are not aware of many systematic studies comparing the de-
velopment effort across several DSM solutions. Mostly, studies
reporting development effort focus on a single case, and differences
in domain, language, generation need and tools make it hard to
compare across individual cases.

Some cases with comparisons do not collect effort directly, but
via a proxy such as lines of code, sometimes even for different code
languages. For example, in [18], a language engineer implemented
the same modeling language twice — with a difference in the lan-
guage definition mechanism applied. From the reported language
specification we can detect that defining a UML profile with OCL
constraints requires twice as many lines of constraint specification
than implementing the modeling language with a metamodel using
constraints offered by MetaEdit+.

Similarly in [7], several tools were given the same set of tasks,
and the length of their specification in lines of code was compared.

Effort Used to Create Domain-Specific Modeling Languages MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Unfortunately the lines of code were in different languages for each
tool, and the tools could choose which parts of the tasks to include,
weakening the accuracy and readability of the comparison. The im-
portance of open publishing of data was however highlighted, when
further analysis in [12] was able to recover some of the information
by graphing tasks completed against lines of code.

Somewhat better than comparing lines of code from different,
generally unfamiliar languages is when lines of code in a known
language are used as a proxy for time. This was the approach taken
in [10], which took a known Eclipse GEF case in Java, and used
COCOMO to estimate based on its 10,000 lines of code that its
development effort was around 13 man-months (2,000 hours). This
was then compared against implementing the same language in
MetaEdit+, which took 1 hour. This was one of the few cases that
broke down the development time into its parts: 15 minutes for the
abstract metamodel and 45 minutes for the notation.

Time is a better measure of effort than lines of code. De Smedt
[26] built the same simple language and its transformation and
simulation support with his department’s AToM3 in 13 hours and
with MetaEdit+ in 11 hours. The experiment showed the value
of picking appropriate tools for the task: AToM3 has a focus on
simulation, making that part easier than with MetaEdit+ where the
API had to be used. Similarly, an attempt to use Poseidon was forced
to stop early on because of the lack of support for transformation.

In [21], two different DSM solutions are created for the ware-
house automation domain with a focus on evaluating decisions
made during language design. In addition to creating modeling
languages, two generators were defined to produce complete au-
tomation software, including the source code in IEC 61131-3 and
the visualization of the automation system. These DSM solutions
were both defined in MetaEdit+ but following different language
design patterns and decisions. The resulting DSM solutions were
then applied to develop the same warehouse system functionality.
The implementations were made by students who did not have
prior experience of DSM or the domain of automation systems. The
effort to develop complete DSM solutions as student work was on
average 33 man-days.

Finally, research indicates that tools can make a remarkable dif-
ference to the effort needed to create DSM solutions. An empirical
study [13] applied a controlled laboratory study in which a portion
of the same language, BPMN, was implemented in 5 different tools.
Thus this study resembles the case of implementing ArchiMate
based on an existing language specification. This study shows large
differences in the development effort depending on the tool used,
ranging from 0.5 days to 25 days. The smallest development ef-
fort was with MetaEdit+ 4.5 [16] and the largest with the Eclipse
Graphical Modeling Framework 2.4.0 [8].

5.1 Integrating other research with our results
Perhaps most remarkably in [13], the tool with the second fastest
development effort was already an order of magnitude slower than
with MetaEdit+. One possible factor would be if the experiment sub-
ject using MetaEdit+ was simply a much better language engineer
than those using the other tools: our cases in this paper show a fac-
tor of 3.75 between the most experienced language engineers and
first-timers. To test this, one of the current authors implemented

the same BPMN subset with the same MetaEdit+ version. That
reimplementation took 45 minutes, over 5 times faster than the
original, placing the original experiment subject at a similar skill
level to other first-timers.

When the same language was made with different tools [13],
by language developers of a similar skill level, effort thus varied
by a factor of 50. When the same tool was used to make different
languages here, effort varied by a factor of 5. A factor of 5 seems
relatively modest, given the spectrum of cases covered here — the
size and complexity of domain and language, need for generation,
and experience of language implementer (with the tool, language
creation in general, the problem domain and the solution domain).

With a factor of 50 based on the tool, and a factor of 5 on all other
factors combined, the tool choice seems likely to cause the largest
differences in the development effort. This effort translates into
the cost of language engineer time, which in an industrial setting
far exceeds factors of tool price. This indicates that teams creating
domain-specific languages should pay special attention to the tool
selection and be aware of that when budgeting for resources and
time.

We look forward to other case studies and language creation
efforts in the industry reporting data on the development effort, time
used, size of the team, etc. Establishing good metrics for collecting
and analyzing the effort is challenging, particularly for industrial
cases. Ideally research would collect data for different elements or
phases of language creation (abstract syntax, constraints, notation,
generators and tooling).

6 CONCLUSIONS
We compared the effort to create complete DSM solutions across ten
cases, combining evidence from two complementary sources: de-
tailed case studies and reported industrial experiences. Case studies
provided us detailed data on how much effort is spent on creating
different parts of the DSM solution. Although the two case study
languages are different, the collected data has similarities: Creating
the abstract syntax in a metamodel seems to take more time than
creating the concrete syntax used for the notation.

The majority of public industry cases with this tool (or indeed
others) did not indicate the effort at all. Those found, however, show
that the effort to create a DSM solution with MetaEdit+ is modest:
ranging from 3 to 15 man-days, with an average of 10. This is in line
with our two case studies with a 4 man-day development effort —
around the lower end of the industry cases. It is also worth noticing
that the size of the effort was quite similar among the DSM solutions,
even though they addressed different domains and were created
by language engineers with different backgrounds and experience
levels. As with our case studies, the actual implementation was
done in all industry cases by one or two people. This indicates
that large teams are not needed for language development (at least
with this tool), but naturally a larger number of language users is
welcome during the testing and incremental development of the
language and DSM solution.

Unfortunately most of the industry cases found did not break
the development effort down into different parts of a DSM solu-
tion. The available data from industry cases indicates that when

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Juha-Pekka Tolvanen and Steven Kelly

implementing a DSM solution with a generator, building the gener-
ator takes about twice the effort to creating the modeling language
(metamodel, constraints and notation). Obviously 10 cases is not
enough to generalize the development effort, in particular when
having differences on the domains addressed and language engi-
neers’ experience, yet they indicate that the investment need not
be large.

Once a DSM solution is available, language users have been able
to start creating models and generating the code rather quickly. The
high productivity of DSM provides a good return on investment,
and the effort used to develop the language is thus paid back quickly
— as data for ROI calculations indicate [14, 21, 24, 25].

While we focused here on the language creation phase, we ac-
knowledge that as in all software development, the maintenance
phase is normally greater in terms of total effort. However, the effort
to update the language, generators and tooling should generally be
proportional to that of creating the language in the first phase. A
major difference, however, is that during maintenance any changes
to the language will also require that existing models be migrated
to newer language versions. Tools vary widely in the work required
for this, and future empirical research is needed to quantify the
effect of that difference over the whole lifecycle.

We welcome future research applying empirical research meth-
ods to language engineering and language creation — as well as
measurements from industrial cases creating languages, generators
and tools. Researchers can repeat and validate this study following
the same taxonomy of parts of the DSM solution and report their
efforts. The scope of the research can also be extended by address-
ing other domains and other kinds of modeling languages. Since
we focused on one tool and research indicates that different tools
have a large influence on the implementation effort, we welcome
further research addressing a wide variety of tools, or identifying
which parts of DSM solutions are especially faster or slower with
certain tools.

REFERENCES
[1] Ronan Barrett. 2015. 5 Years of ’Papyrusing’, Ericsson Modeling Days, Kista, Swe-

den, November 9-10, 2015. Retrieved from https://docs.google.com/presentation/
d/1nR6GRBsS2Ad3OQf8ldMO8MydFEeWFsFd8WqjQ23Bz8s

[2] Carsten Bock. 2006. Visuelle domÃďnenspezifische Sprachen — Der Schlüssel zur
modellgetriebenen Entwicklung von Mensch-Maschine-Schnittstellen?, Model-
Driven Development and Product Lines: Synergies and Experience, Leipzig, Ger-
many, October 19-20, 2006.

[3] Francis Bordeleau. 2014. Papyrus and Open Source Modeling — Status, Strategy,
and Plan. Presentation at Ericsson Modeling Days, Kista, Sweden, 4 November,
2014

[4] N. Brouwers, R. Hendriksen, K. Kahraman, J. Kouwer, and J.-P. Tolvanen. 2016.
Industrial use of domain-specific modeling, DSM workshop, SPLASH. Retrieved
from http://dsmforum.org/events/DSM16/

[5] Verislav Djukić, Aleksandar Popović, and Juha-Pekka Tolvanen. 2014. Using
domain-specific modeling languages for medical device development, Embed-
ded.com, March 08, 2014.

[6] DSMForum.org. 2018. http://dsmforum.org/cases.html
[7] S. Erdweg, T. van der Storm, M. VÃűlter, M. Boersma, R. Bosman, W.R. Cook,

A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P.J. Molina, M. Palatnik,
R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu, E. Visser, K. van der
Vlist, G. Wachsmuth, and J. van der Woning. 2013. The State of the Art in Lan-
guage Workbenches: Conclusions from the Language Workbench Challenge. In
Proceedings of the Software Language Engineering conference, Springer, 2013.

[8] Richard Gronbach. 2009. Eclipse Modeling Project. A Domain-Specific Language
(DSL) Toolkit. Addison Wesley.

[9] Steven Kelly, Kalle Lyytinen, and Matti Rossi. 1996. MetaEdit+: A Fully Config-
urable Multi-User and Multi-Tool CASE and CAME Environment. In Proceedings
of CAiSE’96. Springer.

[10] Steven Kelly. 2004. Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM. In
Proceedings of the OOPSLA and GPCE Workshop on Best Practices for Model
Driven Software Development. http://www.softmetaware.com/oopsla2004/mdsd-
workshop.html

[11] Steven Kelly and Juha-Pekka Tolvanen. 2008. Domain-Specific Modeling: En-
abling Full Code Generation. Wiley.

[12] Steven Kelly. 2013. Empirical Comparison of Language Workbenches. In Proceed-
ings of the 2013 ACM Workshop on Domain-Specific Modeling. http://dsmforum.
org/events/DSM13/

[13] A. El Kouhen, C. Dumoulin, S. Gérard and P. Boulet. 2012. Evaluation of Modelling
Tools Adaptation. CNRS HAL hal-00706701. http://tinyurl.com/gerard12

[14] Juha Kärnä, Juha-Pekka Tolvanen, and Steven Kelly. 2009. Evaluating the use of
domain-specific modeling in practice. In Proceedings of the 9th OOPSLAworkshop
on Domain-Specific Modeling. http://www.dsmforum.org/events/DSM09/Papers/
Karna.pdf

[15] M. Mernik, J. Heering, and A. Sloane. 2005. When and How to Develop Domain-
Specific Languages, ACM Computing Surveys, 37, 4.

[16] MetaCase. 2006. MetaEdit+ 4.5 User’s Guide. http://www.metacase.com/support/
45/manuals/

[17] MetaCase. 2017. MetaEdit+ 5.5 User’s Guide. http://www.metacase.com/support/
55/manuals/

[18] K. Mewes. 2009. Domain-specific Modelling of Railway Control Systems with
Integrated Verication and Validation. Ph.D. thesis. University of Bremen.

[19] P. Mohagheghi, W. Gilani, A. Stefanescu, M. Fernandez, B. Nordmoen, M.
Fritzsche. 2011. Where does model-driven engineering help? Experiences from
three industrial cases. Software and Systems Modeling 12, 3, 619-639.

[20] Object Management Group. 2017. Unified Modeling Language Version 2.5.1.
[21] C. Preschern, N. Kajtazovic, and C. Kreiner. 2014. Evaluation of Domain Modeling

Decisions for Two Identical Domain Specific Languages, Lecture Notes on Software
Engineering 2, 1 (Feb. 2014). DOI: https://doi.org/10.7763/LNSE.2014.V2.91

[22] Profound. 2018. Construction of cooperative design environment of software /
hardware using single-threaded ESL tool. Retrieved April, 2018 from http://www.
profound-dt.co.jp

[23] Olli-Pekka Puolitaival. 2011. Home Automation DSL Case, Presentation at Code
Generation Conference, 2011.

[24] Olli-Pekka Puolitaival, Teemu Kanstrén, Veli-Matti Rytky, and Asmo Saarela.
2011. Utilizing domain-specific modelling for software testing, 3rd Int. Conference
on Advances in System Testing and Validation Lifecycle.

[25] Laurent Safa. 2007. The Making of User-Interface Designer, a Proprietary
DSM Tool. 7th OOPSLA Workshop on Domain-Specific Modeling. http://www.
dsmforum.org/events/DSM07/

[26] P. De Smedt. 2011. Comparing Three Graphical DSL Editors: AToM3,
MetaEdit+ and Poseidon for DSLs. University of Antwerp. http:
//msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/201011/projects/Philip.
DeSmedt/report/report_PhilipDeSmedt.pdf

[27] J. Sprinkle, M. Mernik, J.-P. Tolvanen, and D. Spinellis. 2009. What kinds of nails
need a domain-specific hammer?. IEEE Software, (July-Aug, 2009).

[28] The Open Group. 2016. ArchiMate 3.0 Specification.
[29] The Open Group. 2017. ArchiMate 3.0.1 Specification.
[30] The Open Group. 2017. Architecture Tool Certification: ArchiMate 3 Confor-

mance Requirements.
[31] Juha-Pekka Tolvanen. 2016. Applying Test-Driven Development for Creating and

Refining Domain-Specific Modeling Languages and Generators, In Proceedings of
16th Workshop on Domain-Specific Modeling, Amsterdam.

[32] J. Whittle, J. Hutchinson, and M. Rouncefield. 2014. The State of Practice in
Model-Driven Engineering, IEEE Software 31, 3 (May-June, 2014)

[33] Markus Voelter. 2013. DSL Engineering: Designing, Implementing and Using
Domain-Specific Languages. CreateSpace.

https://docs.google.com/presentation/d/1nR6GRBsS2Ad3OQf8ldMO8MydFEeWFsFd8WqjQ23Bz8s
https://docs.google.com/presentation/d/1nR6GRBsS2Ad3OQf8ldMO8MydFEeWFsFd8WqjQ23Bz8s
 http://dsmforum.org/events/DSM16/
http://dsmforum.org/cases.html
http://www.softmetaware.com/oopsla2004/mdsd-workshop.html
http://www.softmetaware.com/oopsla2004/mdsd-workshop.html
http://dsmforum.org/events/DSM13/
http://dsmforum.org/events/DSM13/
http://tinyurl.com/gerard12
http://www.dsmforum.org/events/DSM09/Papers/Karna.pdf
http://www.dsmforum.org/events/DSM09/Papers/Karna.pdf
http://www.metacase.com/support/45/manuals/
http://www.metacase.com/support/45/manuals/
http://www.metacase.com/support/55/manuals/
http://www.metacase.com/support/55/manuals/
https://doi.org/10.7763/LNSE.2014.V2.91
http://www.profound-dt.co.jp
http://www.profound-dt.co.jp
http://www.dsmforum.org/events/DSM07/
http://www.dsmforum.org/events/DSM07/
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/201011/projects/Philip.DeSmedt/report/report_PhilipDeSmedt.pdf
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/201011/projects/Philip.DeSmedt/report/report_PhilipDeSmedt.pdf
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/201011/projects/Philip.DeSmedt/report/report_PhilipDeSmedt.pdf

	Abstract
	1 Introduction
	2 Investigating Language Creation Effort
	2.1 Subject of the Study: DSM Solution
	2.2 Research Methods

	3 Language Development Effort in Two Cases
	3.1 IoT device
	3.2 ArchiMate

	4 Development effort in reported industry cases
	4.1 Review of reported industry cases
	4.2 Comparing and combining the cases and industry reports

	5 Other research comparing effort
	5.1 Integrating other research with our results

	6 Conclusions
	References

