

 WHITE PAPER

IMPORTING MODELS WITH
METAEDIT+ API

C# CONNECTION FROM EXCEL

Ylistönmäentie 31

FI–40500 Jyväskylä, Finland

Phone +358 400 648 606

Fax +358 420 648 606

E-mail: info@metacase.com

WWW: http://www.metacase.com

© 2016 MetaCase 1

IMPORTING MODELS WITH
METAEDIT+ API FROM EXCEL

Abstract

This paper describes how requirements specified in Excel are integrated

with requirements in models of MetaEdit+ by using the MetaEdit+ API. The

Excel connectivity is implemented with Visual Studio Web Service support.

1 DOMAIN-SPECIFIC MODELING

Domain-Specific Modeling (DSM) raises the level of abstraction beyond programming

by specifying the solution using directly domain concepts. One suitable application area

is architectural modeling languages, like EAST-ADL for automotive industry. EAST-

ADL modeling language contains two kinds of requirement object types describing the

requirements and how the architecture satisfies them. In this paper we describe how the

requirements can be defined in Excel and integrated with requirements specified in

models of MetaEdit+.

2 METAEDIT+ API

MetaEdit+ API provides the interface to access the MetaEdit+ repository

programmatically in real-time. The API interface in MetaEdit+ is implemented as a

SOAP Web Service server. The main function of API is to enable exchange of

conceptual data between MetaEdit+ and other programs. The MetaEdit+ API supports

reading, creating, and updating model elements. In addition to these data-centric

functions, MetaEdit+ provides some additional features that can be accessed or

controlled by the API, like highlighting or animating diagram elements for simulation or

tracing purposes.

We will describe later in this paper at C# code level the integration with Excel and

MetaEdit+. From Excel we export the requirements and import them to the MetaEdit+.

The solution also updates the requirements changed in Excel with the ones already

imported to MetaEdit+.

2 © 2016 MetaCase

3 EXAMPLE

Every domain is different containing own concepts and rules for them, and therefore

every DSM is also different. Here in this sample we use EAST-ADL language that is

used for designing the architecture models for automotive industry. Two particularly

relevant EAST-ADL concepts for our integration case the two different type of

requirements; ‘Requirement’ and ‘QualityRequirement’. Samples of these two different

types opened in MetaEdit+ property dialogs are illustrated in Figure 1.

Figure 1. Requirement and QualityRequirement property dialogs

Requirement object consists of four property fields illustrated on the left of Figure 1:

‘Name’, ‘Formalism’ and ‘Url’ are specified as String fields and ‘Description’ is defined

as multiline Text field. Difference between ‘Requirement’ and ‘QualityRequirement’

objects on the metamodel side, is the ‘Kind’ property type. ‘Kind’ is defined as pull-

down property field illustrated at the bottom of the QualityRequirement on the right of

Figure 1.

MetaEdit+ users can apply the connectivity solution as follows:

 Start MetaEdit+ and login to EAST-ADL project

 Start MetaEdit+ API

 Enter requirements in Excel and export them into MetaEdit+

 Check and use the imported requirement in MetaEdit+

© 2016 MetaCase 3

Figure 2. Importing process

3.1 Requirements in Excel

Figure 3 presents an example of Requirements and QualityRequirements described in

Excel worksheet. Excel worksheet contains both of these requirements in the same table.

Each individual requirement is listed on its own row and RequirementType column (A)

specifies the type of the requirement. Kind column (F) specifies the value specific only

for the QualityRequirement.

Figure 3. Sample of Excel requirements to be imported

When user wants to export these requirements to MetaEdit+, he first opens MetaEdit+

repository with EAST-ADL language, selects the default project for the imported

requirements and starts MetaEdit+ API. Next user selects ‘Export to’ button from Add-

Ins ribbon in Excel, shown in figure 4. After the export procedure is done an

information dialog is shown summarizing the exporting results.

4 © 2016 MetaCase

Figure 4. Sample of Excel requirements imported

4 IMPLEMENTING C# ADD-IN FOR EXCEL

4.1 Setting up the environment

To build the C# solution for exporting these requirements, first we initialize the Visual

Studio’s C# project and add Web Service support for it. Next we generate the

MetaEdit+ WSDL description file for all API services available. Then we add the

generated web service definition file (MetaEditAPI.wsdl) as a web service reference to

our C# solution. After adding the WSDL reference, we are able to call and utilize API

methods directly from C# code.

4.2 How to implement C# add-in in Excel

Main principle in exporting the requirements from Excel to MetaEdit+ is transform

every requirement line in Excel first to the matching metamodel format in MetaEdit+.

Here the format is that of requirements in EAST-ADL metamodel. This transformation

is done in Visual Studio by using the C# programming language. After the

transformation is done, C# will call API methods first to create the conceptual element

into MetaEdit+ repository and later add this new object to the MetaEdit+ model.

Before importing any Requirement or QualityRequirement element, we first create a

new RequirementsModel and give properties for it. New model is named as

‘ImportedRequirements’. During the export and import steps we use the same model as

a target for every single Requirement or QualityRequirement (row in Excel).

The C# code creating the new model structure is presented Listing 1. It shows the most

important parts for the model creation logic. First we define new variable as METype

and set its name value as “RequirementsModel”. Every RequirementsModel graph has

© 2016 MetaCase 5

two property fields available: ModelName as a string and Description as a text. Next we

define a new variable for having both of these property values ‘graphPropertyValues’

which is defined as MEAny consisting two MEAnys.

‘graph_ModelName’ is defined as the first MEAny and its meType value is set as a

String and meValue as “ImportedRequirements”. This ‘graph_ModelName’ is then set

as the first item of graphPropertyValues. Within the similar manner the

‘graph_Description’ is defined as Text and value for it is set.

See more details about the API, methods and types from the documentation at:

http://www.metacase.com/support/50/manuals/mwb/Mw-8.html#Heading2497.

METype graphType = new METype();
graphType.name = "RequirementsModel";
// Set Default values for the graph
MEAny[] graphPropertyValues = new MEAny[2];

MEAny graph_ModelName = new MEAny();
graph_ModelName.meType = "String";
graph_ModelName.meValue = "'ImportedRequirements'";
graphPropertyValues[0] = graph_ModelName;

MEAny graph_Description = new MEAny();
graph_Description.meType = "Text";
graph_Description.meValue = "' RequirementsLibrary imported from Excel: " +

DateTime.Now.ToString() + "'";
graphPropertyValues[1] = graph_Description;

Listing 1. Create a new RequirementsModel properties

Listing 2 presents the actual creation of the new graph information into the MetaEdit+

repository. After both of the properties have been defined, we initialize the connection

to the MetEdit+ API server and name it as meServer.

After initializing the required variables are: graph_properties as an array of two

MEAnys and nullAny as MEAny with MENull as a meType value. Next we can create a

new graph information by using the ‘instProps’ method. instProps method has five

parameters: graphType defined earlier in listing 1 as RequirementsModel,

graph_properties (as an array of two MENulls), graphPropertyValues defined in listing 1

as an array having a string and text with corresponding values, and two variables: np and

area both as MENulls to create the new model to the default project in MetaEdit+. The

instProps method returns MEAny with the MEOop of the new graph instance created or

MENull for an error. This result is set to the ‘newGraphAny’ variable.

6 © 2016 MetaCase

MetaEditAPIPortTypeClient meServer = null;
meServer = new MetaEditAPIPortTypeClient();

MEAny[] graph_properties = new MEAny[2];
MEAny nullAny = new MEAny();

nullAny.meType = "MENull";
nullAny.meValue = "";
//Set Initializes the Graph properties
graph_properties[0] = graph_properties[1] = nullAny;

MEAny area, np;
np = area = nullAny;

//Create a new Graph
MEAny newGraphAny = new MEAny();
newGraphAny = meServer.instProps(graphType, graph_properties, graphPropertyValues, np,
area);

Listing 2. Creating the new graph

Next we will do the same for every Requirement and QualityRequirement row found in

Excel. Some of the Requirements may have been exported and imported already earlier.

In these cases it is preferable to be able to update the existing requirements rather than

creating them as new ones again. To support the incremental updates, we utilize

MetaEdit+ unique object identifier, oid, for every object stored in MetaEdit+ repository.

After creating the new object information in the repository we add object’s unique

identifier back to the object’s row in Excel. Next time if Requirement oid is found from

Excel, we know that this requirement has been exported and imported earlier and we

need to update the existing requirement rather than creating a new one.

In case of updating the existing requirement or qualityrequirements, the instProps’

fourth parameter ‘np’ is specified as an existing oid (update is done to the same object)

and it is ‘nullAny’ (if new object is created).

After the Requirement or QualityRequirement information has been added to the

repository, we add the object information as part of the graph model by using the API’s

addToGraph method. Listing 3 shows method having two parameters, both defined as

MEOop: First parameter contains the new object’s oid and second contains the graph’s

oid.

MEOop newObjectOop = new MEOop();
MEOop newGraphOop = new MEOop();
newObjectOop = createNewMEOop(newObjectAny);
newGraphOop = createNewMEOop(newGraphAny);
meServer.addToGraph(newObjectOop, newGraphOop);

Listing 3. Adding the requirement to the graph

© 2016 MetaCase 7

We also created own function for returning the MEOop from any given MEAny

parameter. This createNewMEOop function is utilized before calling the addToGraph in

listing 4.

public MetaEditAPI.MEOop createNewMEOop(MEAny newObjectAny)
{ //Creates a new MEOop from MEAny parameter, return tempMEOop
 MEOop tempMEOop = new MEOop();
 string[] tokens = newObjectAny.meValue.Split('_');
 tempMEOop.areaID = Convert.ToInt32(tokens[0]);
 tempMEOop.objectID = Convert.ToInt32(tokens[1]);
 return tempMEOop;
}

Listing 4. Creating MEOop from MEAny

After C# code is ready and built, we added a new Ribbon item to our solution in Visual

Studio’s Solution Explorer and associated a new icon with our C# code. Next we

publish our new add-in solution.

After the solution is published it will create all necessary files for this type of

Requirements export functionality in Excel. When you open the Excel it will ask

whether you want to install the new add-in functionality. If you select the installation,

the new add-in will appear in your Excel with the sample data in Excel worksheet.

5 CONCLUDING REMARKS

Models can be exported into MetaEdit+ from different sources. We described here the

principle of using API to import models from another tool, Excel. If you plan to

implement your own integration mechanism, please see the MetaEdit+ API manual at:

http://www.metacase.com/support/50/manuals/

The C# code for this integration as based on EAST-ADL is available on request:

info@metacase.com.

