m MetaEdit+

Version 4.5
The Call Processing Language Example

MetaCase Document No. CE-4.5
Copyright © 2008 by MetaCase Oy. All rights reserve
First Printing, 2° Edition, February 2008.

MetaCase
Ylisténméentie 31
FI-40500 Jyvaskyla
Finland

Tel: +358 14 4451 400

Fax: +358 14 4451 405
E-mail: info@metacase.com
WWW: http://www.metacase.com

No part of this manual may be reproduced or trattechiin any form or by any means,
electronic or mechanical, including but not limitedphotocopying, without express written
permission from MetaCase.

You may order additional copies of this manual ntacting MetaCase or your sales
representative.

The following trademarks are referred to in thisome:

CORBA and XMI are registered trademarks and UML &imified Modeling Language are trademarks
of the Object Management Group.

HP and HP-UX are trademarks of Hewlett-Packard Ga@tion.

Linux is a registered trademark of Linus Torvalds.

MetaEdit+ is a registered trademark of MetaCase.

Microsoft and Windows are registered trademarksliocfosoft Corporation.

Motif is a trademark of the Open Software Foundatio

Pentium is a trademark of Intel Corporation.

Solaris and Sun SPARC are registered trademarkdarais a trademark of Sun Microsystems.
UNIX is a registered trademark of X/OPEN.

Preface

Preface

The goal of this example is to demonstrate Calkc&ssing Language (CPL) in MetaEdit+.

The call processing framework and language (Leretoxd 2004) presents an architecture to
specify and control Internet telephony servicese TPL language in MetaEdit+ allows

service engineers to specify call processing sesviy using directly the CPL concepts.

This example will cover the issues of CPL language and code generation. First we inspect
the CPL language and its key concepts and aftdrvieause it in modeling. Finally we
generate call processing service definitions in Xfdtmat. Please note that certain parts of
the example may require working hands-on to entwebest understanding of the subject
matter.

For exploring the CPL example, the following thirage required:

O MetaEdit+ for trying out the CPL language. The GRImple can be found from the demo
repository, project named ‘Call processing’. Asalsy if you need to extend the created
language further — add notational symbols, addiiooonstraints, generators or by
modifying dialogs and toolbars for modeling toolsyeu need to have MetaEdit+
Workbench or the evaluation version available fremy.metacase.com

O XML viewer or web browser for opening and validgtitie generated CPL scripts.

For further information about MetaEdit+, pleaseerefo the ‘MetaEdit+ User's Guide’,
‘MetaEdit+ Workbench User's Guide’ or our web pagedttp://www.metacase.cantor
further information about CPL see Lennox et al,| ®abcessing Language: A Language for
User Control of Internet Telephony Servicesit#://www.ietf.org/rfc/rfc3880.txt

4 MetaEdit+

The Call Processing Language Example

1 The Call Processing Language
Example

The Call Processing Language (CPL) presents a igi@plomain specific modeling (DSM)
language made for specifying Internet telephonyises.

In this chapter we introduce the purpose of the @Rt the main concepts of the language.
Chapter 2 explains how to access the existing msoitelMetaEdit+ and how to use the

language by modeling a new telephone service tkatribes anonymous call rejection.

Chapter 3 describes how the CPL example was imple&deas a domain-specific modeling

language and generator into MetaEdit+.

Please note that walking through the CPL exampleires a basic knowledge how to use
MetaEdit+. A good starting point to obtaining thisowledge is the Family Tree example in
the ‘Evaluation Tutorial’.

1.1 THE BASIC IDEA OF THE CALL PROCESSING LANGUAGE

The objective to have a DSM solution for CPL waseble to quickly and safely specify
call processing services. Ideally, the service megis could specify the telephony services by
using directly the concepts they are already familith, without having to master or write
XML manually.

To illustrate the CPL domain, let's look at somgitpal service products, which can be
developed with the CPL language:

O Call forwarding if the receiver is busy or does answer
O Rejecting all calls that originate from anonymoddrasses

O Specifying a call to be forwarded to support pemsbrduring office hours, while calls
received outside office hours are forwarded toiaarnail service or web page.

O Proxying incoming calls to the receiver-registesgdtion that best matches the media
capabilities (e.g. video call) specified in thel cafjuest.

By implementing the CPL into MetaEdit+, we obtaimemvironment where a service engineer
can create and modify the call service definitiand automatically generate quality, valid and
well formed CPL scripts, ready to be executed aalaprocessing server.

1.2 AN EXAMPLE MODEL

Figure 1-1 illustrates a sample model of call pssoey service made with the DSM. The
diagram specifies a call redirecting service whalfencoming calls, which originate from

“example.com”, are redirected to the address ‘Gigs@example.com”. If there is no answer,
a line is busy or a failure occurs, the call isimexzted to a sub action. This ‘subaction’
provides an own model, which implements a redingcservice to the voicemail address. All

Call Processing Language Example 5

The Call Processing Language Example

calls that originate from other addresses will bdinected directly to the same voicemalil

address.

incoming

DI’igin.»ﬁh:ldress-sw'rtc:h ‘Q, Location Frer @
e sipejones@example com Timeout: 10
subdomain-of: example.com

busy failure NOANSwwer

Subaction

atherwige —=-==--=--========----- = Call redirected to the voicemail address

Figure 1-1. Incoming calls redirected

1.3 ABOUT THE CPL CONCEPTS

The CPL concepts include:

Language concepts Representation of the concept
A root node represents the starting point for tladl c

process. There can be only one start object in@ehand

there can be only one relationship starting fram it

Switches represent the choices made when runniag th
CPL implementation. There are five switch typestin
language and each switch type has different kinfls o paual_nermz
properties to be entered. Switches can be ‘address’
(background green fountain fill color), ‘language’
(brown), ‘priority’ (purple), ‘string’ (orange) ortime’
(turquoise) related. In the symbol, the switch tyige
shown at the top and the choice arguments aresemed

as property values in the middle. In the samplemshon

the right, the priority-switch has two propertiesndition
value, which is set to ‘equal’, and priorities valuvhich is

set to ‘normal’.

Priarity-switch

The choice results are specified by connecting iickwo
another modeling concept using a relationship; see
‘default’ and ‘otherwise’ paths.

Location modifier types are Location, Lookup or Reer

Location modifiers allow accessing the location adat
=
location. All of them have a light blue fountainll fi [

Location
i jones@example. com

6 MetaEdit+

The Call Processing Language Example

background color and their type is shown at the tophe
sample shown on the right, the location url
‘sip:;jones@example.com’ is presented in the middle
blue.

Signaling operations are Proxy, Redirect and Rejitt Er——
of them have an orange background. Their type and reject: | reject
related icon are presented at the upper part afyheol. anenymous cals

In the sample shown on the right, the rejectiortusta

‘reject’, is presented first, followed by the reasd reject

anonymous calls’.

Non-signaling operations are Log and Mail. These a
presented with a yellow color. In the sample shawrihe

right, the mail object has an url | sipjones@email example.com
‘sip:jones@email.example.com’.

htail

Subaction is presented with a grey rectangle. T
Subaction’s name will be presented with red coltach
subaction has a detailed implementation which Call redirected to the voicemsi
described in a submodel. In MetaEdit+ that can acdress
accessed by wusing the subaction’'s decomposit
functionality, available by selecting the Subacsooopup
menu.

Subaction

Default path relationship specifies cases wherendition
is met or next node is followed directly. Defaulitlp is '
drawn as a solid black line with an arrow head tognto

the next object to be called.

If default path has specific values, like after r@X¥y or
Lookup element, they will be presented in the medaf
the line.

Otherwise relationship specifies an output for sageere
a condition is not met. Otherwise is presented withlue =
dotted line with ‘otherwise’ text in the middle.

To support the generation needs, the modeler direua predefined CPL generator. This
generator can be executed by clicking the editéoslbar button named ‘CPL’. After

completion of the generation process, the generfitedvill be opened in your associated
program, e.g. web browser.

Call Processing Language Example 7

Working with the CPL

2.1

Working with the CPL

In this chapter we discuss how to access the oadlggsing language and how to work with it;
first by playing around with existing models anérrby creating a new call process service.

ACCESSING THE CPL EXAMPLE

2.2

To access the CPL examples, start MetaEdit+, lagirusual into the demo repository and
choose the ‘Call processing’ project from the projests. When MetaEdit+ has completed the
login procedure, the CPL examples can be accesigbhdhe usual MetaEdit+ tools like the
Graph Browser and the Diagram Editor.

All the CPL concepts are shown in the Diagram Etittoolbar after opening a model. As
you will see, the toolbar concepts are groupedtistpwith the root node and continuing with
switches, location modifiers, signaling operatiansl hon-signaling operations.

PLAYING AROUND WITH THE CPL LANGUAGE

To start the tour of the CPL example, open anyefgraphs listed in the Graph Browser. The
first model in the list, ‘Call redirected when thegigin host example.com’ illustrates a service
for a call redirection based on the call’s origdouble-click it from the list to open it in the
Diagram Editor. This model is also presented iruFag2-1.

To access the properties of any model element,ldalick the element in the diagram or in
the integrated property sheet on the bottom-lefthef Diagram Editor. You may also access
operations related to each model item by first ehapthe element and then opening its pop-

up menu.

incaming

DriginNdmss-swhch ‘Q - Tooation o &
Pt sipjonesi@example.com Timeout: 10
subdomain-of: example.com

I ‘

I

1

sy failure NOSNSYVEr

Subaction

i
atherwise --------------------- L Call redirected to the voicemail address

Figure 2-1. A sample service specification with @fL language

MetaEdit+

Working with the CPL

As can be seen from the model, elements of the maless are linked with directed
relationships. Normally, the relationships havelaizel that representing the default path. In
cases involving the root, proxy and location olgetite relationship has a label that represents
the given value triggering the relationship. Thieeotvise relationship is represented with a
dashed blue relationship line, e.g. the relatignddétween the address-switch and the grey
subaction object.

The details of the subaction are presented in aragpmodel. It can be accessed by double-
clicking the subaction object while holding dowre t€trl-key. You may also first select the
subaction in the diagram and then sel@etomposition...from its pop-up menu. The pop-up
selection also provides access to additional ojpastfor example for removing the link to
the sub model or for replacing the current modéhwanother one.

To invoke the code generator, simply press the 6&ton in the Diagram Editor’s toolbar.
This will execute a generator for CPL and afterftleeis produced, the result is opened in the
associated application like in a web browser asvsha Figure 2-2. This specification can be
read by the CPL server that takes care of the bcaillgprocessing.

/= C:\Documents and Settings\JimiMetaEdit+ 4.5\reports\Call redirected when origin host is ... g@gl

@.\ 0 e CHiDocuments and SettingsilimMetaEdit+ 4.5 rep ¥ 4| | X 2

File Edit Wiew Favarites Tools Help

0 40 | @ ciDocuments and Settings\Jm\MetaEdit+ 4.5, | | 0w v B dm - sk Page v () Tools - (@~
Ea
<?xml version="1.0" encoding="UTF-8" 7>
<l-- DOCTYPE cpl FUBLIC "-//IETF//DTD REFCxxxx CPL 1.0//EN™ "cpl.dcd” -
- <cpl=

- =subaction id="Call redirected to the voicemail address"=
- <location url="sip:jones@voicemail.example.com"»
<redirect /=
<flocations
</subactions
- <incoming=
- <address-switch field="origin" subfield="host"=
- «<address subdomain-of="example.com">
- <location url="sip:jones@example.com"=
- <proxy timeout="10"=
— <NDanswers
<sub ref="Call redirected to the voicemail address" /=
</noanswers
- <busy=
<sub ref="Call redirected to the voicemail address" /=
</busy=
- =failure=
<sub ref="Call redirected to the voicemail address" /=
</failures
< prosy =
< flocations
</faddress>
- =otherwises
<sub ref="Call redirected to the voicemail address" /=
</otherwise=
<faddress-switch>
=/incoming:
<fopl=

Done _g My Computer Ho100% T

Figure 2-2. Generated call processing specification

Call Processing Language Example 9

Working with the CPL

2.3 CREATING A NEW MODEL

Next, we will use the CPL language to develop a wal processing service. We will start
from scratch and make a new specification thattgjall incoming anonymous calls. Our call
process specification uses CPL concepts direcllpwing us to create a new service
description within a just few minutes.

2.3.1 Creating a new graph type

First, we need to create a new diagram for the yanons call rejection. Click th€reate
Graph button in the main window or choose the same oerdtom the pop-up menu that
can be opened from the middle window of Graph BmwMetaEdit+ will ask you for the
graph type you wish to use. Just select the ‘Qalt&ssing Language’ from the list and press
OK. Here, you may select the representation and efiitothe new model. For this case of
CPL and graphical language, the initial selectibBiagram is the one to choose.

Next, MetaEdit+ asks you to enter the name forgitagh (Type ‘Anonymous call rejection’)
and add other property values (‘Author’ and ‘Desttoin’, which you may choose to leave
empty for now) for the graph of call process speaifon. After pressing th©K, the dialog
will close and an empty Diagram Editor will open.

2.3.2 Adding a new object to the model

Next, we specify the objects that our call proaesss. We start with creating a root node from
which the service script will start its executi@hoose the ‘root node’ button from the toolbar
or select it from the Types menu and then clicklendrawing canvas. Because the root node
object does not have any properties, there will agpear a property dialog for entering
details.

Next, we will specify the Address-switch object. dnsimilar manner as when selecting the
root node previously, now select the ‘address’ dbjeom the toolbar (next to root node) and
then click on the drawing canvas. This opens aditthat allows you to to specify the details
of the created address-switch. For our case ofredlfection, we need to specify a ‘Field’

value, ‘Subfield’ value and ‘Address’ value thatllwae compared during the call process
execution. Possible values have been predefined¢amde selected from the pull-down lists.
The address value to be compared is entered amg sito the Address value field at the

bottom.

After entering these properties, the dialog forcdyeng the ‘Address’ object should look like
in Figure 2-3. Choos®K and close the dialog. This will add the creategeabinto the

diagram.
Field: origin v
Subfield: user 7
Address: is g
Address walue: annnymousl
I oK ‘ [Caniel] [Infa... l

Figure 2-3. Dialog for adding the ‘Address-switcivject

10 MetaEdit+

Working with the CPL

In a similar manner we can create a ‘reject’ objéatd the ‘reject’ object with property
values 'reject’ for Status and for the rejectioasen ‘I reject anonymous calls’. After adding
all objects to the model, it should look like iretRigure 2-4.

Pddress-switch ‘E} Reject GiD
origin reject: | reject
user anomymaous calls
i£: anonymous

Figure 2-4. Modeling objects added to the servicecéll rejection

2.3.3 Creating bindings between objects

Next we will finish the service implementation bgldang connections between the objects.
You can do this by first selecting the root nodgot) then choos€onnect... from its pop-up
menu and finally click the address object as taigethe relationship.

- For alternative relationship creation possibilitigdease see Diagram Editor chapter in
MetaEdit+ User’s Guide.

Creating a relationship will open a dialog to spepiossible details. For the case of starting
the call from the root element select ‘incoming’ asession type from the pull-down list.
Finally pressAll OK to close the dialog.

In a similar manner you can now also create thatiogiship from the Address-switch to the
Reject object. During the relationship creationylde-click ‘default path’ relationship option
provided by the dialog or select it from the lisidathen pres©K button. The final model
should now look similar to Figure 2-5.

Address-zwitch ‘E} Reject 0D
. . arigin et | red
incoming —- usgr reject: | reject
) anonymous calls
i5: Anonymous

Figure 2-5. Anonymous call rejection service

To generate the CPL file from the graphical sendgpecification, just press the CPL button
provided by the toolbar. The CPL generator willtgmugh the model, produce the CPL file
and open it in the associated program.

Call Processing Language Example 11

How the CPL support was made

3

3.1

How the CPL support was made

We have now described the language, its concemipegies, connections and rules through
the basic tasks of using the CPL language. Nextwillego through some key principles of
the CPL architecture, its concepts and their implatation as a domain-specific modeling
language into MetaEdit+.

CPL ARCHITECTURE

Architecturally, a call processing service is exeduin a signaling server. Signaling servers
are devices which relay or control signaling infatimn. A signaling server also maintains a
database of locations where a user can be readheall processing service makes its proxy,
redirect, and rejection decisions based on theeotstof that database. A CPL specification
replaces this basic database lookup functionalityakes the registration information, the
specifics of a call request and other externalrmédion it wants to reference, and chooses the
signaling actions to perform. Simply put, a CPLal#®es how devices respond to calls and
how a system routs the calls.

The underlying objective for creating a DSM solativas to provide the ability to easily
specify services, which are then generated andugs@safely in a CPL server. Starting point
for the modeling language development was the ideaising graphical models. The
specification of the language for defining serviees available as an XML schema (Lennox
et al. 2004).

3.1.1 Location object

The definitions of the domain concepts, neededrfodeling language construction could be
taken directly from the XML Document Type DefintidDTD). Let’s take an example: the

‘location’ concept in CPL. The specification of thacation’ can be found from the CPL DTD

as follows:

<IENTITY % Clear 'clear (yes|no) "no™>
<IELEMENT location (%Node;)>
<IATTLIST location
url CDATA #REQUIRED
priority CDATA #IMPLIED
%Clear;
>
This piece of DTD specifies that the ‘location’ cept has three properties:

O The url of the address, a string value, which bdladded to the script's location set. The
Url value is mandatory (#REQUIRED) , which is chedkvia a regular expression
specification in the property tool of MetaEdit+.

12

MetaEdit+

How the CPL support was made

O priority, which specifies a priority for the locati. Its value is a floating-point number
between 0.0 and 1.0 or is just empty. In the methhthis checking is done again by
using a regular expression. Figure 3.1 illustraéités using the Property Tool for defining

Priority.
EZ Propenty Tool: Priority g@@
Property Tools Help
O = o%/‘ [E) save and Close i
Mame Priority
Anceskar Properky
Praject
Datatype String >
Widget Input Field =

Default Yalue

Yalue Regesx (0% [0-91+31{ 14001)

Description
The optional "priority” parameter specifies a priority for A
the location. Its value is a floating-point number
between 0.0 and 1.0, IF it is not specified, the server v

Figure 3-1. Priority’s property definition

O clear value, which specifies whether the locatienveill be cleared before adding a new
location to it. In MetaEdit+ the property defintichas predefined pull down list with
values ‘yes’ or ‘no’, with ‘no’ set as the default.

What the above looks in the modeling language?O0%k! follows a pattern, where all similar
kind of language concepts are represented witlsdhee shape, size and coloring schema. For
example location modifiers, namely ‘location’, ‘kgp’ and ‘remove-location’, have the same
rounded rectangle format, blue background coloramdperation-specific symbol in the top-
right corner. Figure 3-2 illustrates the locatigmnbol definition.

Location

Figure 3-2. Location symbol

The ‘Location’ symbol consists of four main elenwer@rey text for the object types at the top
(here ‘Location”) and dark blue ‘Url' property vaun the middle. The red line around the
object and the crosshair in the middle specify dbenectable area. The main symbol has a
fountain fill background color, starting with a wicolor in the middle fading to light blue
towards the border.

3.1.2 Other metamodel specialties

The language provides no concept for specifyingeti of the call process. The execution of
the service ends when the last element in the floweached and performed. Then a CPL
server performs the action and the service endsh BRedirect’ and ‘Reject’ objects
immediately terminate the call processing execusiorthese concepts were defined to have
just incoming flows — i.e. they form leaves of thee.

Call Processing Language Example 13

How the CPL support was made

3.2

The ‘Proxy’ and ‘Lookup’ objects are special casekere the default path relationship must
have a named value. In the proxy case, there issaillity to choose the default path

condition from predefined values of ‘redirectiofBusy’, ‘default’, ‘failure’ and ‘noanswer’.

In the lookup case, the choices are ‘success’fonat’ and ‘failure’. If any of these values is

used more than once for a given object, a chealdpgrt will provide an error and a link to

the object in the model that causes the error.

As many services have common functionality theyladdue treated as re-usable service
components to be called by other actions. Forghipose, a ‘subaction’ concept was defined
into the language: it enables an action to decompus another model, which is treated as a
sub-model. As the subaction could be defined bypgushe same language concepts as the
main CPL definition there is no need to have a #pdanguage for defining the subactions.
In the metamodel this was achieved by defining@udwosition link from a subaction object
to the Call Processing Language graph.

CPL CONSTRAINTS

Along with the identification of the modeling comte, many of the constraints and model
correctness rules were identified. Where possibiey twere defined to be part of the
metamodel so that they are checked instantly dudegign time. In MetaEdit+, such

constraints can be defined by using the graphicelamodeling language (see Graphical
Metamodeling Example for details) or alternativelith the in-built metamodeling tools of

MetaEdit+ Workbench.

Figure 3-3 illustrates some constraints definedttier CPL language. Constraints like ‘there
can be only one root node in the diagram’ or ‘theray be only one default path from

switches’ are defined by choosing constraint typed related language concepts in the
Constraints Tool of the MetaEdit+ Workbench.

== Graph Tool: Call Processing Language Q@@

Graph Tools Help
0 & i3 B | i
Basics | Types | Bindings | Subgraphs | Constraints

In each graph of this type, these constraints apply:

address may be in ak most 1 From otherwise role
address may be in at most 1 Fram role

language may be in at most 1 From otherwise role
language may be in at most 1 From role

lacation may be in at most 1 From otherwise rale
location may be in at most 1 From role

log may be in at most 1 From role

mail may be in at mast 1 From rale

priority may be in at most 1 From otherwise role
priority may be in at most 1 From role
remove-location may be in at most 1 From role
root node may be in at most 1 session phase relationship
skring may be in ak most 1 From otherwise role
string rmay be in at mast 1 From role

tirme may be in at most 1 From atherwise role

time may be in at most 1 From role

root node may occur ab most 1 time

Add Constraint For:

Connecivity v [Add l [Edit I [Delete]

Figure 3-3. CPL metamodel specific constraints

In addition to rules and constraints that are chdckt modeling time, model checking can
also be performed by using the generator. In thgecthe generator analyzes the rules that
can't be checked or are not sensible to check a&ft@h modeling action. The checking

14

MetaEdit+

How the CPL support was made

generator can be launched either by pressing theckc button from the editor’s toolbar or
alternatively by embedding its output in a ‘commeibject in the model itself.

The 'comment’ object lists the results of the sathecking generator, like cyclic structure
found in the diagram, if several overlapping valtresn proxy or lookup objects were found,
if there is a non-connected object etc. Anotherfulsgay to find the cyclic structures is to
selectGraph | Layout in the Diagram Editor, followed by selecting aletrelationships from
the list and pressin@K. After that, MetaEdit+ will open a dialog wherestbyclic paths are
listed. When a cyclic path is selected, it will lighlighted in the diagram. If no cyclic paths
are found, the layout algorithm creates a new laydhe original layout can be restored by
performing an Undo action.

3.3 CPL GENERATOR

Defining generators to produce XML is quite a gfiafiorward process: elements in a model
and their connections are described by XML tagshénbeginning of the XLM document the

settings are defined. Then the generator startgdiyg through all the subactions of the

service specification. The generator visits eacfeathin the model and calls a generator
module for that element’s type. After that, the @mor crawls to the next object via the

‘default path’ relationship. In a similar manndre tgenerator goes on until it founds the object
where no outgoing relationships were made. ‘Othgaivielationships are always generated
after the generation of the default path has beempteted.

The CPL generation did not require any frameworlkdecdo make model-based code
generation possible. As the service specificattomade based on the CPL specification the
schema defines pretty much what the generated siooi@ld look like. You can also modify
the generator or create new ones by opening theer@mem Editor by choosindedit
Generators from the Graph menu. For more details on defining generatorsageesee
MetaEdit+ Workbench User’'s Guide.

Call Processing Language Example 15

Conclusion

Conclusion

In this example we have demonstrated working whi ¢all processing language. With the
CPL language you can design the basic servicesalbprocessing servers. The CPL schema
concepts are mapped almost one-to-one to the DSiMepbs. CPL is implemented as any
other modeling language in MetaEdit+. It is completopen and thus it can be freely
extended to cover additional requirements of catidiing like VoiceXML or SIP services.
You are welcome to extend the CPL language asasdhe generators further.

16

MetaEdit+

