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Preface 

The goal of this example is to demonstrate Call Processing Language (CPL) in MetaEdit+. 
The call processing framework and language (Lennox et al 2004) presents an architecture to 
specify and control Internet telephony services. The CPL language in MetaEdit+ allows 
service engineers to specify call processing services by using directly the CPL concepts.  

This example will cover the issues of CPL language use and code generation. First we inspect 
the CPL language and its key concepts and after that we use it in modeling. Finally we 
generate call processing service definitions in XML format. Please note that certain parts of 
the example may require working hands-on to ensure the best understanding of the subject 
matter. 

For exploring the CPL example, the following things are required: 

� MetaEdit+ for trying out the CPL language. The CPL sample can be found from the demo 
repository, project named ‘Call processing’. As usually, if you need to extend the created 
language further − add notational symbols, additional constraints, generators or by 
modifying dialogs and toolbars for modeling tools − you need to have MetaEdit+ 
Workbench or the evaluation version available from www.metacase.com.  

� XML viewer or web browser for opening and validating the generated CPL scripts. 

For further information about MetaEdit+, please refer to the ‘MetaEdit+ User’s Guide’, 
‘MetaEdit+ Workbench User’s Guide’ or our web pages at http://www.metacase.com. For 
further information about CPL see Lennox et al, Call Processing Language: A Language for 
User Control of Internet Telephony Services at http://www.ietf.org/rfc/rfc3880.txt. 
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1 The Call Processing Language 
Example 

The Call Processing Language (CPL) presents a graphical, domain specific modeling (DSM) 
language made for specifying Internet telephony services.  

In this chapter we introduce the purpose of the CPL and the main concepts of the language. 
Chapter 2 explains how to access the existing models in MetaEdit+ and how to use the 
language by modeling a new telephone service that describes anonymous call rejection. 
Chapter 3 describes how the CPL example was implemented as a domain-specific modeling 
language and generator into MetaEdit+.  

Please note that walking through the CPL example requires a basic knowledge how to use 
MetaEdit+. A good starting point to obtaining this knowledge is the Family Tree example in 
the ‘Evaluation Tutorial’. 

1.1 THE BASIC IDEA OF THE CALL PROCESSING LANGUAGE 

The objective to have a DSM solution for CPL was being able to quickly and safely specify 
call processing services. Ideally, the service engineers could specify the telephony services by 
using directly the concepts they are already familiar with, without having to master or write 
XML manually. 

To illustrate the CPL domain, let’s look at some typical service products, which can be 
developed with the CPL language: 

� Call forwarding if the receiver is busy or does not answer 

� Rejecting all calls that originate from anonymous addresses 

� Specifying a call to be forwarded to support personnel during office hours, while calls 
received outside office hours are forwarded to a voicemail service or web page. 

� Proxying incoming calls to the receiver-registered station that best matches the media 
capabilities (e.g. video call) specified in the call request. 

By implementing the CPL into MetaEdit+, we obtain an environment where a service engineer 
can create and modify the call service definitions and automatically generate quality, valid and 
well formed CPL scripts, ready to be executed in a call processing server. 

1.2 AN EXAMPLE MODEL 

Figure 1-1 illustrates a sample model of call processing service made with the DSM. The 
diagram specifies a call redirecting service where all incoming calls, which originate from 
“example.com”, are redirected to the address “sip:jones@example.com”. If there is no answer, 
a line is busy or a failure occurs, the call is redirected to a sub action. This ‘subaction’ 
provides an own model, which implements a redirecting service to the voicemail address. All 
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calls that originate from other addresses will be redirected directly to the same voicemail 
address. 

 

Figure 1-1. Incoming calls redirected 

1.3 ABOUT THE CPL CONCEPTS  

The CPL concepts include: 

Language concepts Representation of the concept 

A root node represents the starting point for the call 
process. There can be only one start object in a model and 
there can be only one relationship starting from it. 

 

Switches represent the choices made when running the 
CPL implementation. There are five switch types in the 
language and each switch type has different kinds of 
properties to be entered. Switches can be ‘address’ 
(background green fountain fill color), ‘language’ 
(brown), ‘priority’ (purple), ‘string’ (orange) or ‘time’ 
(turquoise) related. In the symbol, the switch type is 
shown at the top and the choice arguments are represented 
as property values in the middle. In the sample shown on 
the right, the priority-switch has two properties: condition 
value, which is set to ‘equal’, and priorities value, which is 
set to ‘normal’. 

The choice results are specified by connecting a switch to 
another modeling concept using a relationship; see 
‘default’ and ‘otherwise’ paths. 

 

Location modifiers allow accessing the location data. 
Location modifier types are Location, Lookup or Remove-
location. All of them have a light blue fountain fill  
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background color and their type is shown at the top. In the 
sample shown on the right, the location url 
‘sip:jones@example.com’ is presented in the middle in 
blue.  

Signaling operations are Proxy, Redirect and Reject. All 
of them have an orange background. Their type and 
related icon are presented at the upper part of the symbol. 
In the sample shown on the right, the rejection status, 
‘reject’, is presented first, followed by the reason: ‘I reject 
anonymous calls’. 

 

Non-signaling operations are Log and Mail. These are 
presented with a yellow color. In the sample shown on the 
right, the mail object has an url 
‘sip:jones@email.example.com’.  

Subaction is presented with a grey rectangle. The 
Subaction’s name will be presented with red color. Each 
subaction has a detailed implementation which is 
described in a submodel. In MetaEdit+ that can be 
accessed by using the subaction’s decomposition 
functionality, available by selecting the Subaction’s popup 
menu. 

 

Default path relationship specifies cases where a condition 
is met or next node is followed directly. Default path is 
drawn as a solid black line with an arrow head pointing to 
the next object to be called.  

If default path has specific values, like after a Proxy or 
Lookup element, they will be presented in the middle of 
the line.  

 

Otherwise relationship specifies an output for cases where 
a condition is not met. Otherwise is presented with a blue 
dotted line with ‘otherwise’ text in the middle. 

 

To support the generation needs, the modeler can utilize a predefined CPL generator. This 
generator can be executed by clicking the editor’s toolbar button named ‘CPL’. After 
completion of the generation process, the generated file will be opened in your associated 
program, e.g. web browser. 
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2 Working with the CPL 

In this chapter we discuss how to access the call processing language and how to work with it; 
first by playing around with existing models and then by creating a new call process service. 

2.1 ACCESSING THE CPL EXAMPLE 

To access the CPL examples, start MetaEdit+, login as usual into the demo repository and 
choose the ‘Call processing’ project from the project lists. When MetaEdit+ has completed the 
login procedure, the CPL examples can be accessed with the usual MetaEdit+ tools like the 
Graph Browser and the Diagram Editor. 

All the CPL concepts are shown in the Diagram Editor’s toolbar after opening a model. As 
you will see, the toolbar concepts are grouped; starting with the root node and continuing with 
switches, location modifiers, signaling operations and non-signaling operations. 

2.2 PLAYING AROUND WITH THE CPL LANGUAGE 

To start the tour of the CPL example, open any of the graphs listed in the Graph Browser. The 
first model in the list, ‘Call redirected when they origin host example.com’ illustrates a service 
for a call redirection based on the call’s origin. Double-click it from the list to open it in the 
Diagram Editor. This model is also presented in Figure 2-1. 

To access the properties of any model element, double-click the element in the diagram or in 
the integrated property sheet on the bottom-left of the Diagram Editor. You may also access 
operations related to each model item by first choosing the element and then opening its pop-
up menu.  

 

Figure 2-1. A sample service specification with the CPL language 
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As can be seen from the model, elements of the call process are linked with directed 
relationships. Normally, the relationships have no label that representing the default path. In 
cases involving the root, proxy and location objects, the relationship has a label that represents 
the given value triggering the relationship. The otherwise relationship is represented with a 
dashed blue relationship line, e.g. the relationship between the address-switch and the grey 
subaction object. 

The details of the subaction are presented in a separate model. It can be accessed by double-
clicking the subaction object while holding down the Ctrl-key. You may also first select the 
subaction in the diagram and then select Decomposition… from its pop-up menu. The pop-up 
selection also provides access to additional operations: for example for removing the link to 
the sub model or for replacing the current model with another one.  

To invoke the code generator, simply press the CPL button in the Diagram Editor’s toolbar. 
This will execute a generator for CPL and after the file is produced, the result is opened in the 
associated application like in a web browser as shown in Figure 2-2. This specification can be 
read by the CPL server that takes care of the actual call processing. 

 

Figure 2-2. Generated call processing specification 
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2.3 CREATING A NEW MODEL 

Next, we will use the CPL language to develop a new call processing service. We will start 
from scratch and make a new specification that rejects all incoming anonymous calls. Our call 
process specification uses CPL concepts directly, allowing us to create a new service 
description within a just few minutes.  

2.3.1 Creating a new graph type 

First, we need to create a new diagram for the anonymous call rejection. Click the Create 
Graph button in the main window or choose the same operation from the pop-up menu that 
can be opened from the middle window of Graph Browser. MetaEdit+ will ask you for the 
graph type you wish to use. Just select the ‘Call Processing Language’ from the list and press 
OK.  Here, you may select the representation and editor for the new model. For this case of 
CPL and graphical language, the initial selection of Diagram is the one to choose. 

Next, MetaEdit+ asks you to enter the name for the graph (Type ‘Anonymous call rejection’) 
and add other property values (‘Author’ and ‘Description’, which you may choose to leave 
empty for now) for the graph of call process specification. After pressing the OK,   the dialog 
will close and an empty Diagram Editor will open. 

2.3.2 Adding a new object to the model 

Next, we specify the objects that our call process uses. We start with creating a root node from 
which the service script will start its execution. Choose the ‘root node’ button from the toolbar 
or select it from the Types menu and then click on the drawing canvas. Because the root node 
object does not have any properties, there will not appear a property dialog for entering 
details. 

Next, we will specify the Address-switch object. In a similar manner as when selecting the 
root node previously, now select the ‘address’ object from the toolbar (next to root node) and 
then click on the drawing canvas. This opens a dialog that allows you to to specify the details 
of the created address-switch. For our case of call redirection, we need to specify a ‘Field’ 
value, ‘Subfield’ value and ‘Address’ value that will be compared during the call process 
execution. Possible values have been predefined and can be selected from the pull-down lists. 
The address value to be compared is entered as a string into the Address value field at the 
bottom. 

After entering these properties, the dialog for specifying the ‘Address’ object should look like 
in Figure 2-3. Choose OK  and close the dialog. This will add the created object into the 
diagram. 

 

Figure 2-3. Dialog for adding the ‘Address-switch’ object 
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In a similar manner we can create a ‘reject’ object. Add the ‘reject’ object with property 
values ’reject’ for Status and for the rejection reason ‘I reject anonymous calls’. After adding 
all objects to the model, it should look like in the Figure 2-4. 

 

Figure 2-4. Modeling objects added to the service for call rejection 

2.3.3 Creating bindings between objects 

Next we will finish the service implementation by adding connections between the objects. 
You can do this by first selecting the root node object, then choose Connect… from its pop-up 
menu and finally click the address object as target for the relationship. 

→ For alternative relationship creation possibilities please see Diagram Editor chapter in 
MetaEdit+ User’s Guide. 

Creating a relationship will open a dialog to specify possible details. For the case of starting 
the call from the root element select ‘incoming’ as a session type from the pull-down list. 
Finally press All OK  to close the dialog. 

In a similar manner you can now also create the relationship from the Address-switch to the 
Reject object. During the relationship creation, double-click ‘default path’ relationship option 
provided by the dialog or select it from the list and then press OK  button. The final model 
should now look similar to Figure 2-5. 

 

Figure 2-5. Anonymous call rejection service 

To generate the CPL file from the graphical service specification, just press the CPL button 
provided by the toolbar. The CPL generator will go through the model, produce the CPL file 
and open it in the associated program. 
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3 How the CPL support was made 

We have now described the language, its concepts, properties, connections and rules through 
the basic tasks of using the CPL language. Next, we will go through some key principles of 
the CPL architecture, its concepts and their implementation as a domain-specific modeling 
language into MetaEdit+. 

3.1 CPL ARCHITECTURE 

Architecturally, a call processing service is executed in a signaling server. Signaling servers 
are devices which relay or control signaling information. A signaling server also maintains a 
database of locations where a user can be reached. A call processing service makes its proxy, 
redirect, and rejection decisions based on the contents of that database. A CPL specification 
replaces this basic database lookup functionality; it takes the registration information, the 
specifics of a call request and other external information it wants to reference, and chooses the 
signaling actions to perform. Simply put, a CPL describes how devices respond to calls and 
how a system routs the calls. 

The underlying objective for creating a DSM solution was to provide the ability to easily 
specify services, which are then generated and executed safely in a CPL server. Starting point 
for the modeling language development was the idea of using graphical models. The 
specification of the language for defining services was available as an XML schema (Lennox 
et al. 2004).  

3.1.1 Location object 

The definitions of the domain concepts, needed for modeling language construction could be 
taken directly from the XML Document Type Definition (DTD). Let’s take an example: the 
‘location’ concept in CPL. The specification of the ‘location’ can be found from the CPL DTD 
as follows: 

<!ENTITY % Clear 'clear (yes|no) "no"'> 

<!ELEMENT location (%Node;)> 

<!ATTLIST location 

 url CDATA #REQUIRED 

 priority CDATA #IMPLIED 

 %Clear;  

> 

This piece of DTD specifies that the ‘location’ concept has three properties:  

� The url of the address, a string value, which will be added to the script’s location set. The 
Url value is mandatory (#REQUIRED) , which is checked via a regular expression 
specification in the property tool of MetaEdit+. 
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� priority, which specifies a priority for the location. Its value is a floating-point number 
between 0.0 and 1.0 or is just empty. In the metamodel this checking is done again by 
using a regular expression. Figure 3.1 illustrates this using the Property Tool for defining 
Priority.  

 

Figure 3-1. Priority’s property definition 

� clear value, which specifies whether the location set will be cleared before adding a new 
location to it. In MetaEdit+ the property definition has predefined pull down list with 
values ‘yes’ or ‘no’, with ‘no’ set as the default.  

What the above looks in the modeling language? The DSM follows a pattern, where all similar 
kind of language concepts are represented with the same shape, size and coloring schema. For 
example location modifiers, namely ‘location’, ‘lookup’ and ‘remove-location’, have the same 
rounded rectangle format, blue background color and an operation-specific symbol in the top-
right corner. Figure 3-2 illustrates the location symbol definition. 

 

Figure 3-2. Location symbol 

The ‘Location’ symbol consists of four main elements: Grey text for the object types at the top 
(here ‘Location’) and dark blue ‘Url’ property value in the middle. The red line around the 
object and the crosshair in the middle specify the connectable area. The main symbol has a 
fountain fill background color, starting with a white color in the middle fading to light blue 
towards the border. 

3.1.2 Other metamodel specialties 

The language provides no concept for specifying the end of the call process. The execution of 
the service ends when the last element in the flow is reached and performed. Then a CPL 
server performs the action and the service ends. Both ‘Redirect’ and ‘Reject’ objects 
immediately terminate the call processing execution so these concepts were defined to have 
just incoming flows – i.e. they form leaves of the tree. 
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The ‘Proxy’ and ‘Lookup’ objects are special cases, where the default path relationship must 
have a named value. In the proxy case, there is a possibility to choose the default path 
condition from predefined values of ‘redirection’, ‘busy’, ‘default’, ‘failure’ and ‘noanswer’. 
In the lookup case, the choices are ‘success’, ‘notfound’ and ‘failure’. If any of these values is 
used more than once for a given object, a checking report will provide an error and a link to 
the object in the model that causes the error. 

As many services have common functionality they could be treated as re-usable service 
components to be called by other actions. For this purpose, a ‘subaction’ concept was defined 
into the language: it enables an action to decompose into another model, which is treated as a 
sub-model. As the subaction could be defined by using the same language concepts as the 
main CPL definition there is no need to have a separate language for defining the subactions. 
In the metamodel this was achieved by defining a decomposition link from a subaction object 
to the Call Processing Language graph. 

3.2 CPL CONSTRAINTS 

Along with the identification of the modeling concepts, many of the constraints and model 
correctness rules were identified. Where possible they were defined to be part of the 
metamodel so that they are checked instantly during design time. In MetaEdit+, such 
constraints can be defined by using the graphical metamodeling language (see Graphical 
Metamodeling Example for details) or alternatively with the in-built metamodeling tools of 
MetaEdit+ Workbench.  

Figure 3-3 illustrates some constraints defined for the CPL language. Constraints like ‘there 
can be only one root node in the diagram’ or ‘there may be only one default path from 
switches’ are defined by choosing constraint types and related language concepts in the 
Constraints Tool of the MetaEdit+ Workbench. 

 

Figure 3-3. CPL metamodel specific constraints 

In addition to rules and constraints that are checked at modeling time, model checking can 
also be performed by using the generator. In this case, the generator analyzes the rules that 
can’t be checked or are not sensible to check after each modeling action. The checking 
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generator can be launched either by pressing the ‘Check’ button from the editor’s toolbar or 
alternatively  by embedding its output in a ‘comment’ object in the model itself.  

The ’comment’ object lists the results of the same checking generator, like cyclic structure 
found in the diagram, if several overlapping values from proxy or lookup objects were found, 
if there is a non-connected object etc. Another useful way to find the cyclic structures is to 
select Graph | Layout in the Diagram Editor, followed by selecting all the relationships from 
the list and pressing OK . After that, MetaEdit+ will open a dialog where the cyclic paths are 
listed. When a cyclic path is selected, it will be highlighted in the diagram. If no cyclic paths 
are found, the layout algorithm creates a new layout. The original layout can be restored by 
performing an Undo action. 

3.3 CPL GENERATOR 

Defining generators to produce XML is quite a straightforward process: elements in a model 
and their connections are described by XML tags. In the beginning of the XLM document the 
settings are defined. Then the generator starts by going through all the subactions of the 
service specification. The generator visits each object in the model and calls a generator 
module for that element’s type. After that, the generator crawls to the next object via the 
‘default path’ relationship. In a similar manner, the generator goes on until it founds the object 
where no outgoing relationships were made. ‘Otherwise’ relationships are always generated 
after the generation of the default path has been completed. 

The CPL generation did not require any framework code to make model-based code 
generation possible. As the service specification is made based on the CPL specification the 
schema defines pretty much what the generated code should look like. You can also modify 
the generator or create new ones by opening the Generator Editor by choosing Edit 
Generators from the Graph menu. For more details on defining generators, please see 
MetaEdit+ Workbench User’s Guide. 
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4 Conclusion 

In this example we have demonstrated working with the call processing language. With the 
CPL language you can design the basic services for call processing servers. The CPL schema 
concepts are mapped almost one-to-one to the DSM concepts. CPL is implemented as any 
other modeling language in MetaEdit+. It is completely open and thus it can be freely 
extended to cover additional requirements of call handling like VoiceXML or SIP services. 
You are welcome to extend the CPL language as well as the generators further. 


