m MetaEdit+

Version 4.5
The S60 Phone Example

MetaCase Document No. SE-4.5
Copyright © 2008 by MetaCase Oy. All rights reserve
First Printing, 2° Edition, February 2008.

MetaCase
Ylisténméentie 31
FI-40500 Jyvaskyla
Finland

Tel: +358 14 4451 400

Fax: +358 14 4451 405
E-mail: info@metacase.com
WWW: http://www.metacase.com

No part of this manual may be reproduced or trattechiin any form or by any means,
electronic or mechanical, including but not limitedphotocopying, without express written
permission from MetaCase.

You may order additional copies of this manual ntacting MetaCase or your sales
representative.

The following trademarks are referred to in thisome:

CORBA and XMI are registered trademarks and UML &imified Modeling Language are trademarks
of the Object Management Group.

HP and HP-UX are trademarks of Hewlett-Packard Ga@tion.

Linux is a registered trademark of Linus Torvalds.

MetaEdit+ is a registered trademark of MetaCase.

Microsoft and Windows are registered trademarksliocfosoft Corporation.

Motif is a trademark of the Open Software Foundatio

Pentium is a trademark of Intel Corporation.

Solaris and Sun SPARC are registered trademarkdarais a trademark of Sun Microsystems.
UNIX is a registered trademark of X/OPEN.

The S60 phone example

Preface

The S60 phone example illustrates how cellular phapplications can be modeled and
generated based on DSM. To achieve this, a donp&odgc modeling language is
implemented into MetaEdit+ along with a generatorgroducing code. Using the modeling
language, a developer can design phone applicaiging directly the domain concepts of the
phone, like its widgets and services. Generatoesuaed to produce the executable code,
automate the deployment to run the code in an dorul(@vith a single-click), check the
models and produce documentation.

This example covers both the issues related toapplication modeling as well as in part how
the DSM was made. First, we inspect the modelingudage with some examples and then we
discuss the issues of modeling language and genesaécification. Compared to other DSM
creation examples, we will focus on showing hovwnmport external symbol elements in order
to define notation as well as ports. On the codegsion side, special focus will be put to
integrating library code and manually written cedth the models.

For exploring the S60 phone example thoroughlyfeewing things are required:

O MetaEdit+ for trying out the S60 phone languagee Pphone example can be found from
the demo repository, from the project named ‘S66ngh For further information about
MetaEdit+, please refer to the MetaEdit+ User’sdBui

O Nokia S60 SDK emulator for running the generatepliegtions. The emulator you can
download fromwww.forum.nokia.comDownload S60 SDK which is named as “2nd Ed,
FP2 146 268". There may also be newer versiondadlai Alternatively you can use a
real target device, Symbian smartphone using S@@adiework.

QO Python-interpreter for running Python code in theukator or in a real target device. This
Python package can also be downloaded frovmw.forum.nokia.com Download a
package named “Python for Series 60 1.2 for Se@@sZ“ Edition”. This should
download a file named PythonForSeries60_1 2 forEdn&P2_SDK.zip. Before
installing it you must first install S60 SDK. Wecmmend that you install them using the
default directories as suggested by the installers.

We expect that you have knowledge about using MitaEIf you want to extend the DSM
further — add notational symbols, additional coamistis, generators or by modifying dialogs
and toolbars for the modeling tool — you shouldéhBetaEdit+ Workbench or the evaluation
version available frorttp://www.metacase.com

4 MetaEdit+

The S60 phone example

1 The S60 phone example

The S60 phone example presents a DSM languagesatooli support, specifically tailored for
developing applications into cellular phones. Tégeét for the code generation is Python for
Series 60, a framework which runs on Symbian srhartps. Because of this target, the
modeling language is based on the architectureyghbervices and widgets that this particular
framework provides. Naturally, it would also be gibte to model and generate code for other
cellular phone frameworks in a similar way. Actyalinside S60 already two other
frameworks and programming languages (C++ and Jaeajupported in addition to Python.
DSM for these is also implemented, but they arsidatthe scope of this S60 phone example.

In this first chapter we introduce the S60 modelemgguage and its usage scenarios. Chapter
2 continues to explain how to use the language aiftlexample: we modify an application
design and generate code to run the modified egipit. Chapter 3 describes how the
language and generator were defined. Rather tlausifug on basic metamodeling capabilities
that are discussed in the tutorial examples on madaling, here we inspect selected aspects
of language and generation creation. On the lareysate we show how to define ports for
representational purposes and how to use extemaphigs for the notation. On the code
generation side, we show different ways to refen&mually written code from models.

Please note that testing the modeling language naodiels presented here requires basic
knowledge on how to use MetaEdit+.

1.1 THE BASIC IDEA OF THE DSM FOR S60 PHONE

The general objective of the “S60 phone languagetoi ease and speed up application
development. This is achieved by raising the lefedbstraction directly from programming
concepts to Ul concepts and phone services. Daiisghides the unnecessary complexity as
application developers do not need to master tkalg®f the phone architecture and related
programming model. Briefly, by using the modelimgduage a developer draws a graphical
design of the application logic using S60’s Ul edens (lists, forms etc.) and services (SMS,
accessing files, taking a picture etc). At any stafjthe design phase, a developer can run a
generator that produces application code readgXecution. The generated code uses the API
services provided by Python for S60 framework.

This domain-specific language pushes applicatiogigtle toward extreme simplicity and
easiness by using high-level Ul concepts, widgetialization that is 1:1 to the actual phone,
and by drawing behavioral logic with arrowed linésirthermore, the modeling language
covers architectural rules that prevent develofireraake designs that are illegal: ideally, if a
developer can draw the application, it will work.

1.2 AN EXAMPLE

Using the DSM for S60 phones, the design process ge follows: A developer specifies the
application by thinking about the wanted servicéshe phone, the Ul that is needed and
navigation flows within the application. These pbafedicated concepts are directly the

S60 Phone Example 5

The S60 phone example

modeling language’s concepts too. They can beteeldmom the editor toolbar and placed on
the drawing area. The modeling elements can bbdugpecified with related properties and
connected together to specify the navigation flows.

An example of an application design is illustratedrigure 1-1. If you are familiar with some
phone applications, like phone book or calendan, yost likely already understood what the
application does. It allows a phone user to regifstea conference via text messaging, view
the conference program and speaker data or brdwwssonference program via the web.

. Check
¢ v) Credit card
our narmes Invoice
Caonference [o] 3 Abe -
registration: ﬂ
YWelcome

h

Wﬂn
Please choose Tu 10.45|combo h 4

Registration Eragram Tu 11:35| combo
-3 Program Tu 12:28| combo +35E555645605
i | Unregister Tu 14:30| combo Registration
Tu 15:20| combo +Personhlamed+. +Pavmert

Options

Close v

Pifagram Registration made M

@ http/fwww metacase com O

k

+358:555645606
Cancel_registration

SMS Cancellation M Quit @

sent

h

h

ancel

Figure 1-1. Conference registration application

As you can see from the model, all the implemenationcepts are hidden (and are not even
necessary to know at this stage). Developers camsfon finding the solution by using the
phone domain concepts, such as Note, List, Forng Sahding and Query.

The modeling language covers also phone domairs,ruidich prevent developers from
making illegal designs. For example, in S60, itygical that after sending an SMS message,
only one Ul element or phone service can be trigdieAccordingly, the DSM allows only one
flow from the SMS element. This means that apgbicatievelopers do not need to master the
details of the S60 architecture and programmingehdélyou understand the phone Ul and
services it can provide, you can start developglytar phone applications.

Finally, a developer can run a generator to prodiage and execute the application in an
emulator. If you have not installed the SDK andnewyt Framework, you may still inspect the
generated code. Figure 1-2 illustrates how theiegimn is executed in an emulator. This
application is generated from the model illustrated-igure 1-1. By default the generator
expects that the emulator is installed into theadiefdirectory of the SDK installer. You may

modify the target directory for producing the Pythoode by using the Generator Editor
provided by MetaEdit+.

6 MetaEdit+

The S60 phone example

Conference

= registration
gy

Your name?
3123

[Mike |

Dk

Figure 1-2. Running the generated code in an ext®@ emulator

The generated code uses the services that the |&B@rm and its framework provide. After

design, there is no need to map the solution tdeémentation concepts in code or to modify
the generated code. Built applications should &laee better quality since typical errors
found in manual programming do not occur anymore.

In addition to generators that produce code, aldpee may also produce final documentation
of the application or run design checking by uspgcific generators.

1.3 ABOUT THE S60 PHONE MODELING LANGUAGE

The modeling concepts of the language are showhareditor’s toolbar. They can also be
seen from Types menu. Figure 1-3 shows the contéritee Types menu and summarizes the
modeling concepts with their notational symbols.

@ start Application start and stop
'i' Skop

E Farm

O Text_editor Ul controls

E Lisktbio:x

£ List

E Mulki_query

2 Moke Widgets

1 Popup_menu

2 Query

< Condition Lugjc

= Qpen

= Open_as_standalone
SendSMS

[®] start_gxe

1 Comment:

Phone services

< Relationship
Navigation flow
A Flow

¥ Back
<7 Condition

Figure 1-3. Modeling concepts for S60 phones

S60 Phone Example 7

The S60 phone example

The modeling concepts are grouped as follows:

e ‘Start’ and ‘Stop’ concepts are used to specifyliapfion start and end states. Their
semantics are close to Start and End states ad fowtate machines.

e Ul controls (Form, Text editor and Listbox) filléhwhole display. They have their
own state behavior and richer internal structuemtbther Ul elements.

* Widgets represent the different dialogs that agglable for the application.
» ‘Condition’ is used to specify logic and extra ufer the navigation flows.

* Phone services represent the concepts that ateeSynbian and S60 phone services
via the Python API. These include accessing fiteses in the phone, browsing web,
sending SMS (short messages), making calls andssioce other pre-built phone
applications, such as calculator, calendar or camer

* Navigation flow is specified by using three diffet&inds of relationships:
o ‘Flow’, which describes the mandatory navigatiamiflof the application.

0 ‘Back’, which is used to specify navigation caneglivhen the normal default
cancel policy is not seen as adequate.

0 ‘Condition’, which is used when application logi@quires specifying
conditions that could not be described by usingother modeling concepts.

« ‘Comment’ element is used to attach free textuacdptions as comments that are
visible in the design model.

8 MetaEdit+

Working with the DSM for S60 phone

2.1

Working with the DSM for S60 phone

In this chapter, we discuss how to access the eeaimpletaEdit+ and how to work with it:
First by playing around with an existing applicatidesign and then by modifying the
application using the modeling language. Finallg, generate the modified application and
run it in a PC-based emulator.

ACCESSING THE S60 PHONE EXAMPLE

2.2

To access the S60 phone example, start MetaEditgse ‘S60 phone’ from the project list
and login as usual into the demo repository. Wheetalddit+ has completed the login
procedure, the S60 phone example can be accesetheinormal MetaEdit+ browsing and
modeling tools like the Graph Browser and the DaagEditor.

PLAYING AROUND WITH THE S60 PHONE LANGUAGE

2.3

We start by inspecting already available designet®drhey are listed in the Graph Browser
in the main MetaEdit+ window. Double-click the gnmapamed ‘Conference registration:
Application’ to open it in Diagram Editor. This djgation is already discussed in Section 1.2.

The application logic is drawn by using flow retaiships from one start state to stop states.
You may inspect the properties of any model elerbgrdouble-clicking them in the diagram
or in the Diagram Editor sidebar. You may also asagperations related to each model item
by first choosing the element and then openingdts-up menu.

MODELING TO CHANGE THE APPLICATION

The next step in working with the modeling languag® change the current application logic
by adding new elements to the model and changiagdvigation flows. The change request
for our modeling tasks is as follows:

a) If the user wants to stop the registration processtrol must go back to the start menu
for reselecting the required action.

b) If the user wishes to cancel the registration,application has to ask for a confirmation
prior to sending the SMS message.

c) Search functionally for choosing a payment methedumnecessary as there are few
options only.

Let’'s next model the application accordingly andrtlgenerate code to execute the modified
application to verify the changes. The next sestisinow how to make the changes into the
model.

S60 Phone Example 9

Working with the DSM for S60 phone

2.3.1 Adding a new relationship for the navigation flow

The default policy to navigate backwards is to goat previous Ul element; excluding
elements that made irreversible actions like santixt messages, making a phone call or
taking a picture with the camera. In our currergigie model pressing cancel while choosing a
payment selection follows this default policy: éturns to the Query that asks the user to fill
out a name. This cancel behavior is not represdntdte model as it is default behavior and
therefore not needed to model. Now, however, wel neespecify that the application returns
back to the start menu when cancel is pressedathsteentering registrants name.

To change the default policy, we need to add a Ipeek navigation flow. Since we already

know the flow type, named in the language as ‘Battié fastest way to create a relationship
Is to choose the ‘Back’ relationship type from tbelbar, followed by clicking the elements

that we wish to connect.

To add a breakpoint as an angle of the relationgidoyou may click the drawing area in the
places where you would like to add a breakpoint &uch option is illustrated in Figure 2-1.
You may also move the relationship and/or add lpeisks to the line for better routing
afterwards.

Fenerator.
ancel

Check
. \
‘} Credit card

Your name? 3 Abe Invoice

Conference @
registratian: il |
Welcome

¥

Registrat
h ¢

Program | text

Please choose

h 4

+35855564 8606
Registration
+Persontlamed+. +Pavment

Registration
-3 Program 4
Unregister

Program

Figure 2-1. Adding a cancel navigation relationgbiphe application

After connecting the elements a dialog is openesptxify the properties for the Back flow.
In our case they are not needed so just pk#<8K . Now the design is updated and we could
generate the code and test the application by ipgetise ‘Build’ button in Diagram Editor’s
toolbar.

2.3.2 Adding a new widget element

The second request was to ask for a confirmatidoréesending a message for canceling the
registration. Here we need to add a new dialogchvlaisks the user to confirm. For this

purpose, the ‘Query’ object is most suitable. Td adjuery, press the ‘Query’ button from the

toolbar or select it from the Types menu. Thenkdlicthe diagram into an empty place to add
a new Query. This opens a dialog where we canfypibe details of the element.

For a 'Query’ we can enter its ‘Prompt’ text (likeo you want to unregister?’) and fill other
needed properties. Here only the query type is itaptt Choose ‘query’ from the list to have
a Boolean query. The Boolean query means thatipge€XK in the application continues the
flow and pressing Cancel goes one step back. @tlogerty fields are not necessary: ‘Internal
name’ allows to give a nhame for the query that wikn be shown in the generated code

10

MetaEdit+

Working with the DSM for S60 phone

(otherwise the generator gives a name), ‘Initidl@ais not relevant as the selection is made
directly by using the navigation buttons, and d@ntgfReturn variable’ stores the value into
the named variable. In the conference applicatiarh snformation is not needed, unlike for
example when sending the registration message wdedls as arguments data stored in
variables for payment method and registrant name.

After you have defined the two relevant propertibg, dialog for specifying a query should
look like in Figure 2-2. ChoosBK and close the dialog. This adds the created objettte

diagram.
3| Query: Object @

Prompt: bu:n wou want bo unregisker?

Internal name (optional):

Query bvpe: query w
Initial walue:

Return variable (optional):

o | (o | []

Figure 2-2. Adding a query to the application desig

Next, you can delete the current relationship ftbemPopup menu to the ‘Cancel_registration’
SMS message. Then move the created query betweedpup menu and the ‘Cancel
Registration’ SMS sending object and connect ihwitem. Relationships can be created in
many ways, but let's use here one which is not dasepre-selecting a relationship. First,
click the Popup menu object in the diagram thasable user to choose the operation (of
‘register’, ‘program’ or ‘unregister’). Then opets pop-up menu and choo8ennect... Next
click the query element you created to specify tHrget for the relationship. This opens a
dialog asking a relationship type. As we did nat-pelect a relationship from the toolbar
MetaEdit+ asks to choose among possible ones. Palick the ‘Flow’ or alternatively
choose it and pres3K.

This creates a relationship in the model. If tHatienship or its roles have properties, a new
dialog opens allowing their entry. In our case @@ specify the value that is chosen in the
pop-up menu to follow the unregistration path.

Click the tab ‘From choice: Please choose’ andrahie choice value as illustrated in Figure
2-3 below and presall OK in the dialog.

- Strictly speaking, the choice value is not mandatoere because other possible choices
are already specified. The code generator thus @sgeat if other values are not met, the
one with no choices will be followed. If more thare choice value is left unspecified, a
model checking will report a warning and points data that need to be specified.

S60 Phone Example 11

Working with the DSM for S60 phone

* From choice: Role: Please choose

Flow | From choice: Please choose | Fo: Do you wamt fo snegister?
Choice: Unregister{
I All oK, l l Cancel Al l [Info... l

Figure 2-3. Entering a choice value for the navayapath

Finalize the navigation flow by connecting the teglaquery to the SMS element sending the
‘cancel_registration’ message. You can create ¢haionship as done earlier or choose first
‘Flow’ relationship from the toolbar and then clitke elements in the navigation order: first

the query as a source and then the SMS sendintpageh.

2.3.3 Changing a model element

Finally, we need to remove the unnecessary seaaichffom the list element that provides the
payment options: as there are just three paymerunsp the provided search functionality for
long lists by using the phone keyboard is not ndeldere. To change the design model
accordingly, you need to modify just one propeftyhe List object. First double-click the List

object for choosing payment method and then séhectSearch field enabled’ property (see

Figure 2-4).

¥ List: Object

List: Check,
Credit card
Inwoaice

Internal name (optional);
Return variable {optional): | Payment

Search field enabled:

| o | [Cancsl l [Irfo... l

Figure 2-4. Modifying properties of a design eletnen
After the modifications the application design diddook like in Figure 2-5.

12 MetaEdit+

Working with the DSM for S60 phone

ATTTTTT T s =Cancel
® .. [Check
¢ v o T.| Credit card
- our names :
Conference o 3 Abe > Irvice
registration: n -
YWelcome | I |

v ‘I;’Regisfr i
Please choose
Registration
-3 Program

H Unregister

Frogram

+358555645606
Registration
+Personflamed+. +Paviment

Options

Close v

Priogram Registration made M

ﬁ httpfwww metacase com O

¥ -

SMS Cancellation Quit
+355555645606 | SENE M

Cancel_registration -

oxd

) 4

----Cancel

Figure 2-5. Modified conference registration apgiicn

2.3.4 Generating the application code and running it in an
emulator

The DSM is made to support agile development: At stage we could have produced the
code and tested the application by simply runnimg generator. After making all three
changes, we can now generate code to run the appfidn a PC emulator. If the emulator is
not installed (see instructions in the prefacehthwu may only inspect the generated code.

To execute the application simply press the ‘Bubidtton in Diagram Editor’s toolbar. This
produces the code and starts the emulator so youucathe generated application. After the
PC emulator starts, choose Python from the phosktale (you may need to scroll down to
see the Python icon). Then press@yions key and choosBun script from the menu. This
opens a list of available applications. Choose heéomference registration’ and pre€s.
You may now use the application to test the charygesmade. Figure 2-6 illustrates the
query added.

- In the emulator, the SMS sending does not work deds not have access to a cellular
network. The generated applications show insteadta that displays the content of the
SMS message. For deployment in the product, youncatify the SMS sending part of the
generator and remove the note code and commemtstfre actual SMS sending message.
See code generator definition for details.

S60 Phone Example 13

Working with the DSM for S60 phone

Conference

= registration
av 1=

Are you sure @
=1

Ok Cancel

Figure 2-6. Running the modified application aftede generation

You may also run other generators, like those pihatuce documentation, run metrics and
model checking. You are also welcome to make athanges to the application, inspect other
available design models or to create totally nepliegtions — from model to executable code.
We leave this part to you and move next to DSM enpntation.

14

MetaEdit+

Creating the DSM in MetaEdit+

3.1

Creating the DSM in MetaEdit+

We have now used the S60 phone language. Next, hife ts the language and code
generation definition.

L ANGUAGE DEFINITION

MetaEdit+ Workbench User's Guide describes the tionalities for defining modeling
language in more detail. These metamodeling funatities are also discussed in tutorials,
such as the Evaluation Tutorial, the Watch Examghe the Graphical Metamodeling
Example. We focus here on two special aspectsrgfulage definition: importing external
graphics to the language’s notation and using ports

3.1.1 Importing external graphics into language symbols

The DSM for S60 phone is based on following 1:lualiation to the actual phone. The
notational symbols used in phone Ul can be thusiexpgirectly in the modeling language.
MetaEdit+ allows importing the external graphic&neents either as bitmaps (BMP, GIF,
JPG, PNG) or vector graphics (SVG). Next, we sho@ scenario on how to import graphics
as symbols to represent a modeling concept andcgivditions for its visualization.

In the S60, each query instance is visualized wittiedicated icon to show which kind of
query we have. For example a question mark is @isethe Boolean type of query. This
symbol, available as a bitmap, can be imported 8igimbol Editor by choosingymbol |
Import Bitmap... and then selecting the respective file.

Once the symbol element is added, its representadn be made conditional based on the
values given by a modeler. In the case of the gquestark it should only be shown when the
modeler selects ‘query’ as value for the ‘queryetyproperty. To add such a constraint, select
the question mark symbol in the Symbol Editor apdroits formatting setting by choosing
Format... from the pop-up menu. Then go to the condition(tae Figure 3-1) to specify the
condition.

S60 Phone Example 15

Creating the DSM in MetaEdit+

*| Format BJ

Location and Size | Condition

Condition source

(@ Property | Query type hd

() Generator

Condition

(&) String query
=rs W

() RegExp

Close

Figure 3-1. Specifying symbol condition

Symbol conditions are specified by selecting fitst source and then giving a value for the
condition. The condition source can be based ompepty or on the output of a generator. A
generator-based condition source allows you to i§p@most any condition for symbol
visualization. Often, like here, the condition &sbd on one property only.

As shown in Figure 3-1 a property is chosen tohgesburce and from the list ‘Query type’ is
selected. In the condition part, the value the d@mmmust meet is specified to be a ‘query’.
This is the same value as specified in the metamédea result, when a query type is chosen
to be a Boolean query in the model a Question rmadhown. Respectively those symbol
elements of Query whose conditions are not meharshown.

3.1.2 Defining ports

The S60 language uses ports as representatioma¢mtie so that main Ul controls like Form
can be related to other elements via two kindsawinections. Ul controls have also own
menus and their specification in the language emented using a port. If you select a form
in the model you can see that the symbol has twoectables from which relationships can
be drawn: a larger main symbol and a smaller fdidbp menu.

To see how the representational port is definechdpe Symbol Editor for the Form object
(see Figure 3-2). Then choose the connectable shewrred rectangle related top the Options
menu. The connectable is selected when its tamgjet ;0 the middle is selected too. If the
target point is not selected, then you may havesehahe Options text element. The Symbol
Editor shows the chosen object in the active figlthe status bar.

MetaEdit+

Creating the DSM in MetaEdit+

4% Symbol Editor - Form
Symbol Edt Wew Align Help

OB e D0 TOONMOUE =

¢

&[]

Generator..

Color: | v| Fill: | v| Skyle: |

W | ‘weight: | W |

Active: Connectable " Grid: 10@10

[snap [show ” = | 200% v| 1)

Figure 3-2. Form symbol

Open theFormat...

menu from the pop-up menu to see the port dedimityiven for the

selected connectable. Figure 3-3 shows that th@emtable uses port ‘Left softkey’. As
pressing the left softkey in the real S60 phonensphe Options menu, the port is hamed

accordingly.

% Format

Conneckable | Location and Size

3

Porkls):

Sticky targetpoink

[] arid sensitive

Close

Figure 3-3. Relating ports to connectable

Ports are defined with the Port Tool similarly ther language concepts. In this case, the port
is just used for representational purposes so liedt ‘softkey’ port does not have any
properties. For details on Ports see MetaEdit+ \Memkh User’s Guide.

S60 Phone Example

17

Creating the DSM in MetaEdit+

3.2 CODE GENERATION: RELATING MODELS AND CODE

It does not always make sense to generate all dwdetly from models. Companies often
have already existing code or the DSM could natnlee to specify all the functionality using
domain concepts. In this section we represent smppeoaches by using the S60 example to
integrate models with manually written code.

3.2.1 Generator provides integration with the component

library

Usually, the best approach is to create a compditwaty or a component framework that
provides prefabricated software building blocks tttaan be used when developing
applications. This was exactly the case of S6@saservices are made available via the Python
framework. The code generator then calls diredtly $ervices provided by this framework.
Creation of such a component library does not reegcdg require a lot of effort as such
components may already exist from earlier develograéorts and products, and just need a
little tweaking.

To illustrate how a code generator calls the sepvif the framework, let's highlight the case
of Query. You can see the code generator for theryfabject by selectinggraph | Edit
Generators... in the Diagram Editor. This opens Generator Edi@hoose the generator
named ‘'_Query’ from the list on the left. You wiihd it in the tree structure under ‘'Build’.
Your view in Generator Editor should then look like Figure 3-4. It shows the complete
generator definition for producing Query code.

&% Generator Editor, for, Application |Z| |E| [g|

Gererator Edit View Breakpoint Format Help

LB Be ¥R v 00 g BX ok
B i U A

Hierarchical ~ ||Graph

>

- Open_as_standalone A Object
+i- Popup_menu Port
Role

ery
Relationship code Relationship
- Reburn variable name Templates

Hi- SendsMs W || fEeneral b

Report ' Query' -
/* Produce single field guery code */
'def ' subreport ' Internal neme' run '():' newline
'# Query: ' :Prompt; newline
if :Return varisble % [optionall); then

' global ' subreport ' Return wvarisble nsme' run newline
endif

ighle name' run ' = appuifw.guery(u”’
Vi

"i!' newline

if ' subreport '_Return wvariable name' run
subreport ' next gquery element' run

' else: # Cancel selected' newline

subreport ' Back' run
endreport v

Figure 3-4. Calling the service of the underlyingmiework

18

MetaEdit+

Creating the DSM in MetaEdit+

The highlighted area in the figure shows the pathe generator that makes the actual call to
the Python framework. In other words, it takesdata from the model to produce the call to
the API. Code produced by the highlighted genenadiefinition could look like:

PersonNamed = appuifw.query(u"Your name?", 'text’)

This code is actually taken from the Conferenceistesfion application where a query
element is used for entering registrants nameKggpee 1-1). The first highlighted line of the
generator creates the variable in which the qualyevis saved, followed by the call to the
framework, i.e. to appuifw module and its querywg®r. The rest of the highlighted generator
fills the needed parameters by taking them fromntloelels. Actually, the second highlighted
line creates already the needed two parameteithdosample code shown above: the prompt
text and the type of query (i.e. ‘text’). The resthe generator includes the initial value to the
call if such is specified in the model.

As this small example illustrates, the DSM raigesdbstraction and hides the complexity as a
developer who uses the modeling language doeseaw®at to know about Python, learn and
master the phone framework or know the programmiodel when making the applications.

3.2.2 Referring to libraries from the models

The S60 language also allows specifying Python abeetly in the models. The language is
thus extended from pure domain concepts to inchatke concepts too. The places for using
code, however, are restricted to only a few plattesse where it makes sense to apply a code
library code or write code manually. Also, the cammcepts in the modeling language are
restricted into two: referring to library code oritmmg code manually.

Consider the calculation example shown in Figufe Jhis model is also available in S60
project. This small application asks for two numbatues and shows their sum in a note
dialog. The calculation algorithm is not specifieg using the modeling concepts but rather
entered as a textual specification into the note.u&e here Python for writing the algorithm
as the generator can take this textual specificatial use it directly in the generated code.

t This sample calculates a sum for two integers
Give A Give B @
3 123 - 123 . n
Fent Foat
L] EN
A
1
i
L J
: Guait @
cancel --------- - a

Figure 3-5. A design model referring to a codedigr

Double-click the note element to see its properfether than showing text inside the Note
element its content is now treated as a code. Thelacode comes from a function library
and a function ‘calculate’ is chosen. Avalue anélBe are then provided as arguments to the
function. Note that these two values are definedetisrn values for the two queries made
before the calculation.

S60 Phone Example 19

Creating the DSM in MetaEdit+

Libraries are usually considered to be either black or white-box. In the case of black-box
we see just the interface (here: ‘calculate (alp)f not its implementation. For the S60 case
the language is defined to be white-box: conteffitthe library function can be seen and
modified. Double-click the Function used propexgltulate (a,b)’ to see its implementation.
Figure 3-6 shows the implementation and descripticthe calculate function.

| Function: Object: Function used in Note @

Function nare: | o==0ER=

Pararneters: a,b

Function body:
firsk=u"First input: " + stria) ~
second=u"Second input: "+ str(b)
sum= "sum = "+str{a+b)
skring= first+' "+second+" '+sum
return skring v

Documentation:
This Function calculates sum of two parameters and
returns sum value as skring.

[| [| [0]

Figure 3-6. Selecting a library function

The S60 language allows defining functions whiledelmng as well as importing them from
an existing library into MetaEdit+ by using the ARInctionality. Such functions can be
imported completely or you may choose to just mgkineir public interface available in
models. In the case of S60 language, the code af@narxpects that Functions are imported
completely, so their content is also generated timoapplication code. Alternatively, a code
generator can import the function from the librdoying generation.

3.2.3 Entering code directly in models

Instead of referring to or importing libraries, ig always possible to have one or more
language elements just for writing code directlpithe models. This is obviously not as good
an option as having a framework or libraries, busélected places it can be useful. In the case
of the S60 language, a Form has for instance aor@t'save validation’ function that is run
to check that the changes made into a Form areaoin the modeling language such ‘save
validation’ function is entered into a textual peoty.

For a more complex case let's look at the condigt@ment in the S60 language. Condition
allows specifying additional rules, checks and ptievigation information that goes beyond
the direct DSM support. In the ‘RestaurantFindgplecation (see Figure 3-7) a condition is
used to check that the given zip code is legabuincase, it means that a zip code has 5 digits.

20 MetaEdit+

Creating the DSM in MetaEdit+

Select restaurant
by name Enter narme < Ab
by type 2 T | 55554606 Restname
axit +ame
it
by e
¥
Restaurant type v
_ ShS message
Grgek . - sent M
Italian o~
A
Cancel
ancel
¥
Provide location ZIP —True
code 123 > legal_zip | 555645605 Resttype
+Type+, +Location

==Falze

L4
ZIP must have s @
digits

Figure 3-7. Restaurant finder application with aditon for ZIP code validation

For the checking purpose, a condition named ‘legipl is added to the diagram. Double-click

it to see its details as shown in Figure 3-8. T@endition' object has two properties: a
‘Condition variable’ and ‘Condition’. The code istered as a Python script so that it can be
used directly by the code generator. The codensteither True or False. This value is then
used for guiding the navigation: if the length lod¢ zip code is 5 characters a SMS message is
sent, otherwise a note is opened informing tha® ‘Alust have 5 digits’ before going back to
the ZIP code entry.

| Condition: Object

Condition variable: Iegal_zi|:4

Condition:
if lengskriLocation)) ==5: LS
leqal_zip=True
elze:
legal_zip=False

o | [| [wen |

Figure 3-8. Restaurant finder application with aditon for ZIP code validation

Instead of having here code written directly, itiiso possible to use library functions similar
to the calculate function that we discussed earlidiis would allow having a library of
common conditions that would then reused in desigdels.

In addition to the ‘Condition’ object the S60 laage allows to write manual code also to the
same places where the use of libraries is posdfliieere is no reference to a library function
then code is expected to be written directly ifite text field. The text entry can be written
using the MetaEdit+’s internal text editor or byings your favorite editor. The Options
settings in the MetaEdit+ main window allow yousjpeecify the use of external text editor.
See MetaEdit+ User’s Guide for details.

S60 Phone Example 21

Creating the DSM in MetaEdit+

3.2.4 Regeneration with protected blocks

Final option is to generate code with protectecckdo Generate partial code which can later
be modified without loosing the manual changes wihencode is regenerated. In the case of
the S60 language such is not needed as the modaliggage already identifies places for
writing the code. For the sake of demonstrationydwer, we will add a protected block
definition to our current generator so that manualritten condition code can later be
modified.

While defining protected blocks, we need to consige things: identify parts of the code
where manual changes are needed and define hokshbdwe described in the code. For the
demonstration we want to generate condition cotdedrprotected block.

- Better use of protected blocks would be here ifntloeleling language would not have a
conditional code concept at all and the generatauld create a template or skeleton
code based on the model, like variable names, érthiel protected blocks.

Protected blocks must be defined such, that tleele avorks according to the target language.
Therefore we need to first define the how proteditks are presented in the generated
code. MetaEdit+ provides a default block definitiont for our case of Python we need to
specify our own. Consider the following generatefimition for producing a protected block
into a generated Python file.

filename subreport '_default directory' run id ".py
md>5start '# MEPMD5 ' md5stop newline merge
subreport ‘Generate Python script' run

close

endreport

The first line of the generator specifies that bgeneration is used for a file named using the
modelid and ‘.py’ extension for a python file. The secdim& defines how checksums are
presented and here the only change to the defallles is the use off* used for making a
comment in Python.

Next, we need to modify the generators where caddet written as protected block is

produced. For the condition code we must open tee@@tor Editor and its generator named
‘* Condition’. For this generator, we specify startd end for the protected block by using
reserved words ahd5id for start andnd5sumfor the end.

In this case, we want to include only one valuenfrine model into the block: a condition
code. Figure 3-9 shows the generator definitionrwietected block definition is added into
the generator. The highlighted line starts the loleith md5id tag, followed by the unique id
within the file. Here, theoid refers to the unique identifier MetaEdit+ gives &l model
elements. The line includes also comment text ab e block can be identified from the
generated code. The ‘Do’ clause then takes theeviatum the model and indents every line to
follow Python conventions to indent code insideauaction. Finallymd5sum is used to end
the protected block.

22 MetaEdit+

Creating the DSM in MetaEdit+

&% Generator Editor for Application |Z||E|r5__(|

Generator Edit Wiew EBreakpoint Format Help

DE Ed yEDR -~ OO0 #Eg BX T b B i UA

Hier archical w ||Part # | filename ... write ... close

check back flows ||Pole flenarne ... append ... close
i || Relationship filename ... merge ... close

Earrmn Templates filename ... read
Fotrn Figld validation Functions General filename ... print

Forr figlds Control gl rdSid ... mdShlock ... mdSsum
i b Form flags w mv external ... execute v
Report ' Condition' ~
/* Produce condition code */ 1
‘def ' type oid '():' newline
Condition terms' newline
if :Condition; then
' md5id oid ' PROTECTED CONDITION CODE EBLOCK' mdShlock
do :Condition; { ' ' id newline }
't mdSsum
endif
' # Condition results' newline
subreport ' next condition element' run
endreport B
v

Figure 3-9. Generating code with protected blocks

Now the generator produces checksum for the bloakis evaluated during regeneration. If
changes are made into the block, its content iggaperated. In case of the Restaurant finder
application the generated code for the conditiakddike:

def Condition25_1763():
Condition terms
MEPMD5 25 1763 PROTECTED CONDITION CODE BLOCK
if len(str(Location)) ==5:
legal_zip=True
else:
legal_zip=False
MEPMD5 4a958480fd0245a0626fd58c2be1f277

- See MetaEdit+ Workbench User’'s Guide for detailsisimg regeneration support.

S60 Phone Example 23

Conclusion

Conclusion

In this example, we have demonstrated a DSM fonphapplication development. With the
domain-specific language we can model applicatimisg phone concepts and execute them
in a PC emulator or in the real phone device.

On the DSM definition side we focused on a few sre& language design: ports and
importing external graphics to language notation.te code generation side we described
some options for relating manual code with the apeleerated from the models.

The modeling language is implemented as any otlmteling language in MetaEdit+. It is
completely open and thus it can be freely extentteadover additional requirements of
modeling or code generation. You could for examptalify the generator to produce native
Symbian C++ code from the same models or extendnibaeling language to cover a larger
part of the phone framework than that provided lyghén for S60. The choice is yours
because with DSM you control both the languageelkag the generators.

24

MetaEdit+

