MetaEdit +

Version 5.0
The Graphical Metamodeling Example

MetaCase Document No. GE-5.0
Copyright © 2012 by MetaCase Oy. All rights reserve
First Printing, 2° Edition, September 2012.

MetaCase
Ylisténméentie 31
FI-40500 Jyvaskyla
Finland

Tel: +358 14 641 000

Fax: +358 420 648 606
E-mail: info@metacase.com
WWW: http://www.metacase.com

No part of this manual may be reproduced or trattechiin any form or by any means,
electronic or mechanical, including but not limitedphotocopying, without express written
permission from MetaCase.

MetaEdit+ is a registered trademark of MetaCase dther trademarked and registered trademarked
terms, product and corporate names appearing #rf@nual are the property of their respective
owners.

The graphical metamodeling example

Preface

The goal of this example is to demonstrate grapimegiamodeling in MetaEdit+. Graphical
metamodeling is added to MetaEdit+ to support thdyestages of language creation:
designing the basic metamodel that covers the &eguage concepts and related rules. The
created language design can be imported into MétaBdorkbench and extended with the
metamodeling tools of MetaEdit+ Workbench.

Technically, the metamodeling language is definedoae of the many domain-specific
languages in MetaEdit+ Workbench. Now the domaiddsigning modeling languages and
generating language definitions to be executed etaldit+.

This example focuses on using the metamodelingukagg and generating the created
language definition into an XML file. The generatdiL will be imported back into
MetaEdit+ Workbench as a modeling language. Pleage that certain parts of the example
require you to work “hands-on” to ensure the bestenstanding of the subject matter.

For exploring the metamodeling example thorougirtys need to have MetaEdit+ installed on
your machine. If you wish to extend the createdyleage further — add notational symbols,
additional constraints, generators or by modifyitiglogs and toolbars for modeling tools -
you should use MetaEdit+ Workbench or the evalmatiersion, which is available for
download from www.metacase.com.

For further information about MetaEdit+, pleaseerefo the ‘MetaEdit+ Users Guide’,
‘MetaEdit+ Workbench Users Guide’ or our web pagd#tp://www.metacase.com

4 MetaEdit+

The graphical metamodeling example

1 The graphical metamodeling example

The graphical metamodeling example presents a noelgling language and its tool support
specifically tailored for designing modeling langea. Strictly speaking, with the
metamodeling language we focus on the basic metalmadhich covers a language’s
concepts, their properties, connections and rukesvell as integration between several
languages.

In this chapter we introduce the graphical metartiogdanguage and its usage scenarios.
Chapter 2 then explains how to use the languagea @mall example in which we create a
metamodel of a Use Case Diagram. Chapter 3 shows® created language specification
can be generated and imported into MetaEdit+ Wargbefor inspection and further
extension.

In this metamodeling example we will mostly discuge use of the language for
metamodeling. Because the metamodeling langudgelemented similarly to other domain-
specific modeling languages in MetaEdit+, it carelkeended using the metamodeling tools of
MetaEdit+ Workbench. This latter part, howevern@ addressed in this example although
modifications of this metamodeling language aresjibs.

Please note that walking through the metamodelkagnple requires a good knowledge of the
metamodeling concepts of MetaEdit+ and basic kndgdeon how to use MetaEdit+. A good
starting point to get this knowledge is the Fariifge example in the ‘Evaluation Tutorial’.

1.1 THE BASIC IDEA OF GRAPHICAL METAMODELING

A graphical metamodel usually covers the basic diogleconcepts, their properties,
connections and related rules. In terms of Metakdiese concepts cover the following
GOPRR metamodeling concepts: graphs, objects, grepe relationships and roles our
modeling languages may have.

Graphical metamodeling is helpful at the early stagf language creation when we want to
design the basic language structure and discust @hbwith others. A graphical metamodel is
also useful for getting an overview of the language

During the later stages, language definers wiltl fin becomes more effective to continue
building the language via model examples rathen thia the metamodel. This is simply
because practical examples provide the abilitgs$b the language and allow language users to
understand it easier than when using the plain madal. Therefore, after having done the
initial language design work graphically, it is n@lly better to continue by using MetaEdit+
Workbench’s metamodeling tools to implement the glete language into MetaEdit+. This is
achieved by importing the generated XML-based mgreation of the modeling language
back into the MetaEdit+ Workbench. The MetaEdit+r®¥ench is then used to extend the
language further by defining notational symbolsditdnal constraints, generators or by
modifying dialogs and toolbars for modeling tools.

We should note that graphical metamodeling is adiqularly suitable for language evolution
as it is separate from the models made so farodésit allow so well to test language
modifications with real models. Nor does it allovakmg changes into notations, generators,

Graphical Metamodeling Example 5

The graphical metamodeling example

1.2

dialogs or toolbar modifications. The metamodetimgls of MetaEdit+ Workbench, including
the Symbol Editor, Generator Editor and Dialog &disupport the whole spectrum of
language design and implementation.

AN EXAMPLE METAMODEL

Using the graphical metamodeling language, defidioigain-specific languages is divided in
three stages. You start by designing the basic emiacand rules with the graphical
metamodeling language and then generate the meghmuad an XML file. Finally, you
import this file into MetaEdit+ as a language deiam and can apply it immediately. More
about generating and importing XML type files inapker 3.

Figure 1-1 illustrates a sample language spedificatvith the graphical metamodeling
language. This diagram specifies the metamodel Dt Flow Diagram. The Data Flow
Diagram consists of three basic elements: ‘Extérri8tore’ and ‘Process’. These are
specified using the Object concept in the metaniogdanguage. As these three objects have
common properties and similar connections in data,fan object type called ‘Abstract’ has
been added to the language. This is a supertygieeadther concepts. The ‘Abstract’ object is
also marked as an abstract concept in the langwaghkowing the text {0}

Abstract {0}
Mame: String (unigue per graph’ To Detta flovy
Description: Text Label: Strng
From
External Store Process
Store ID; Mumkber ICr: Mumber (unigue globally)
Process specification: Text
Ta
Doata 1l
Objects in binding: Fratm -
External, Store Labal: Strng

Figure 1-1. Metamodel of Data Flow Diagram

The metamodel in Figure 1-1 shows also propertigbe modeling elements. For example,
‘Abstract’ has two properties: ‘Name’ which is airsg) that has a unique value within a data
flow diagram and ‘Description’ which data type ext The uniqueness rule for the ‘Name’
specifies that there can’t be two instances ofeStekternal or Process in the same Data Flow
Diagram with the same name.

MetaEdit+

The graphical metamodeling example

Other modeling elements have additional propertiks,‘Process’ has a property type ‘ID’.
This property is of number data type and its valoesst be unique among all data flow
diagrams, as specified by the ‘globally’ keywortl:is not possible to have two different
processes with the same ID in any of the diagrams.

If we inspect the metamodel further, we can seettiee are two possible connection types
between objects in the modeling language. Thesaemions are called bindings in the
metamodeling language (and in MetaEdit+ respegfiveDne binding is specified from
‘Process’ to any of the subtypes of ‘Abstract’. Tiker binding can be drawn from ‘External’
or ‘Store’ to ‘Process’. For the latter bindingetimetamodeling language has a concept called
‘Object set’ to describe a collection of objectsanbinding. This simplifies drawing the
metamodel as there is no need to specify bindioigedch object separately.

Finally, elements in bindings, namely relationshapsl roles, can also have properties. In this
example, the relationship ‘Data Flow’, which isidefl only once although presented twice in
the diagram, has a string property type to entéabel for the flow. The metamodeling
language includes a number of other rules but thespresented later.

1.3 ABOUT THE GOPRR METAMODELING LANGUAGE

The graphical metamodeling language was made tok wath MetaEdit+'s GOPRR
datamodel. Therefore, all the modeling conceptd use graphical metamodeling come
directly from MetaEdit+. These metamodeling conseéptlude:

Language concepts Representation of the concept
Graph specifies one modeling language, such as iﬁ;@'fr‘gggﬂigﬁﬁg@gﬁ """"" !
State Diagram and Use Case Diagram. Details of ! !
each language are modeled with a separate ! !
metamodel. Integration between languages, with | State !
explosions and decompositions, is specified in a ! !
metamodel for multiple graph types. i |

Object describes the basic concepts of a modeling State

language. Objects are the main elements of you |State name: String (Unigue per graph)
design. They are elements that you connec [Description: Text

together and often reuse, such as Proces:

Message, Button and State.

Relationship defines properties for the objects’
connections, such as Inheritance, Message, Call
and Transition. They are used to form bindings
with objects and roles.

Fliowy

Role specifies the lines and end-points of

relationships, like the Superclass part of Arneatoh
Inheritance relationships and the From part of

State Transition.

Property defines the attributes which characteriZeroperties are represented as part of
any of the previously mentioned languagether language concepts. Properties
concepts. Properties can be of different data typesose values are objects are shown like

Graphical Metamodeling Example 7

The graphical metamodeling example

(string, text, number, Boolean, collection etc.dl arthis:
link to other modeling language concepts or to
external sources, such as files, programs or
webservices. Examples of properties are State
name, Function identifier, Display type, and Data

type.

Attributes *

Binding connects a relationship, two or mor
roles, and for each role, one or more objects ir
graph. Binding is further specified with
multiplicity.

Process
From

Diata flowy

Abstract
To

Object Set describes a collection of objects that

can play the same role in a binding, for instance Objects in binding:
that External and Store can both be in the From External, Store

role in a Data Flow relationship.

Inheritance allows creating subtypes of other
language concepts, for instance External is a
subtype of Abstract.

Decompositionallows objects to have subgraphs, —
for instance a Process can decompose to another D) -
Data Flow Diagram.

Explosion allows objects, relationships, or roles

to be linked to other graphs, for instance the @ |
detailed structure of a Store in a Data Flow

Diagram may be specified in an Entity

Relationship Diagram.

To support generation from graphical metamodelsk bt MetaEdit+ the GOPRR
metamodeling example includes a generator thattese®IXT files. MXT file specifies
metamodels in XML. The generated MXT file can bepdmed into MetaEdit+ and then
applied as a modeling language. For further detaildhe MXT format see MetaEdit+
Workbench User’s Guide.

8 MetaEdit+

Working with the metamodeling language

2 Working with the metamodeling
language

In this chapter, we discuss how to access the gralpimetamodeling language and how to
work with it, first by playing around with existingmeta)models and then by creating a new
modeling language (metamodel) by using the graphietamodeling language.

2.1 ACCESSING THE METAMODELING EXAMPLE

To access the metamodeling example, start MetaFdhigose the ‘GOPRR’ project from the

list of available projects and login as usual itie demo repository. When MetaEdit+ has
completed the login procedure, the metamodelingngka can be accessed via the usual
MetaEdit+ browsing and modeling tools like the Gr&yowser and the Diagram Editor.

2.2 PLAYING AROUND WITH THE METAMODELING
LANGUAGE

To start inspecting the metamodeling example, cggnof the Graphs listed in the Graph
Browser. A graph names ‘Structured Analysis andidgdeésshows the integration among
multiple languages. Double-click it from the ligt bpen this integration metamodel. This
metamodel is also presented in Figure 2-1.

The diagram provides an overview of multiple gragpes, showing how four different
modeling languages of ‘Structured Analysis and §@sare integrated. In the diagram, each
modeling language is defined by including it inaegke rectangle that has a dashed line. This
denotes to a graph type in MetaEdit+. The concepteach language are then illustrated
inside the graph type symbol. If a language elerigenot attached to be part of any language
(be inside a graph type symbol), an error texh@as in the respective language element.

To access the properties of any model element, Idatick it in the diagram or in the
Diagram Editor sidebar. You may also access operatielated to each model item by first
choosing the element and then opening its pop-upime

Graphical Metamodeling Example 9

Working with the metamodeling language

2.3

Diata Flowe Diggram

o @ Process
)

Module

Data flow

Entity

Relationship

Figure 2-1. Metamodel for multiple graph types

Those language elements that have connections her danguages are linked with
relationships. ‘D’ stands for decomposition and f& explosion. According to the Structured
Analysis and Design method, a ‘Process’ (Objecta ibata Flow Diagram (Graph) can be
decomposed into another instance of Data Flow RiagfProcess’ can also be exploded into
one or more Structure Charts to specify its intestracture and to State Transition Diagrams
to specify its behavior. In a similar manner, aesoh of ‘Store’ identified in a Data Flow
Diagram can be described using an Entity-Relatipn¢BR) Diagram. Other integration
among the language concepts is illustrated sinilarl

Details of each graph type are specified by usindjfierent metamodeling language. To
inspect these details, a separate diagram candredpTo do so, you can simply double-click
any of the graph types (symbols with dashed boydeldle keeping CTRL pressed down.
You may also choose a graph type in the diagransatettOpen Subgraphfrom the pop-up
menu to open the detailed metamodel. The pop-wgrctsah Manage Subgraphs...allows
modifying the subgraph links: removing or addingvranes.

To open the metamodel of the Data Flow DiagrampkK&&RL pressed and double-click the
Data Flow Diagram symbol in the metamodel. Thisl wipen a new Diagram Editor to

illustrate the same metamodel as presented in &igtk. To inspect metamodels of other
languages repeat this operation for other Grapgbesty

CREATING A NEW METAMODEL

The next step in working with the graphical metaglody language is to develop a new
modeling language. In other words, we will use thetamodeling language to create a
metamodel.

We will start here from scratch and make a graphieaamodel for the Use Case Diagram.
We chose the Use Case Diagram because it is fanalismost and it has just a few concepts.

10

MetaEdit+

Working with the metamodeling language

Because of this, we can create a metamodel oatigibhge, generate the MXT file and import
it back to MetaEdit+ to use the created Use Casgulage, all within half an hour.

2.3.1 Creating a new graph type

We start by first creating a new diagram for the @ase metamodel. First, click theeate
Graph button in the main window or choose the same ojgréitom a pop-up menu that can
be opened from the middle list of Graph Browseru¥aill be then asked for the type of
metamodel you would like to create. As we defineelanly one language choose Metamodel
[GOPRR] and pres9K.

Next, enter the name for the graph (‘Use Case Riafrand add properties that you like to
give for each diagram, like ‘Model name’ or ‘Docum&tion’. To do this, open a pop-up
menu in the Properties field and selédd Element....This opens a new dialog for entering
values for each property (sé&ure 2-2). You can now enter the details of apprty type,
like its mandatory name and optional local namedaaised in the modeling tool. You can also
specify a data type for each property by choosiomfa list of possible data types. These data
types are described in detail in MetaEdit+ Worklbeblser's Guide. For our case of Use Case
Diagram we can choose String data type for ‘Modaeme and Text data type for
‘Documentation’.

The dialog allows also entering default values thoe property and choosing uniqueness
constraints. For ‘Model name’ we should choose wangss constraint ‘globally’ as it does
not make sense to have multiple use case diagraimsh& same name.

Finally, we may enter a description for each metdehelement. The description entered here
is used in the created language and can be accdggad modeling in MetaEdit+ from the
Help menu. The property dialog for the Model nammeusd now look like Figure 2-2. Choose
OK and close the dialog.

Pt R ——

(0§ Property [GOPRR; Object: Properties in Metar.. [
Property name: Model name
Local name:

Datatype: String

Object Datatype:

Default valuels):

Uniqueness: globally

Description:
MName of the use case diagram

[oK] | Cancel

Figure 2-2. Dialog for adding a ‘Model name’ pragedor Use Case Diagram metamodel

Graphical Metamodeling Example 11

Working with the metamodeling language

Enter property type ‘Documentation’ in the simitaanner to ‘Model name’ property and then
close the dialog of Use Case diagram. This opergrgoty Diagram Editor.

2.3.2 Adding a new object to the metamodel

Next, we need to specify the objects that we wsk in our modeling language. In the Use
Case Diagram they are ‘Use Case’, 'System’ anddAct et’s start with the Actor concept.
Choose Object [GOPRR] button from the toolbar onfrTypes menu and then click in the
diagram. This opens a dialog to specify detailthefobject.

First we must give a name for the object: Entertokc Then we can specify the property
types each actor may have. The property types aachctor name’ can be specified in a
similar way as we did already for the propertiggetyof graph type Use Case Diagram.

While defining the Actor concept we can also reateady defined property types. For
example, ‘Documentation’ text property type waatty defined for Use Case Diagram. We
can use it as a property type for the Actor toorduse it choos@dd Existing... instead of
previously usedAdd Element... menu item. This opens a dialog showing all avadabl
property types. Double-click the ‘Documentatiorrit to add it to the list of selected elements
to be added. Then pre€&K button to add the selected property type into ttopgrties of
‘Actor’.

To finalize the definition of the ‘Actor’ we can tm a description to the modeling concept
and choose the occurrence constraint. The defallevN’' means that multiple actors may
exist in one use case diagram. Choosing the valuset‘O’ will signify that the object is
abstract, similar to the “Abstract” Object in ouatad Flow Diagram example in Figure 1-1.

After you have defined the two properties, theatiafor specifying ‘Actor’ should look like
Figure 2-3. Choos®K and close the dialog. This will add the createj@citto the diagram.

Object name: Actor

Properties: |Actor name
Documentation

Occurrence: N

Description:
An actor defines a coherent set of roles that users
of an entity can play when interacting with the
entity. &n actor has one role for each use case
with it communicates. Each actor can be
characterized with a name (linked into class

[0K] | Cancel ‘ | Info... ‘

Figure 2-3. The specification of ‘Actor’ object

Next, we can continue by entering other modelingcts for the Use Case Diagram. Add the
‘System’ and ‘Use case’ objects in a similar manif@r ‘System’ we can define occurrence
to be ‘1", meaning that each use case diagramloaw gist one system. If you like to specify
multiple systems within the same use case diagthamge this value to ‘N'.

12

MetaEdit+

Working with the metamodeling language

To allow linking external files to use cases in thedel remember to choose External Element
as a data type for ‘Documentation file’ propertpeay After adding these two additional object
types, the use case metamodel should look liker&igl.

System {1}
Matme: String (unigue per graph)
Documentation: Text

Actor Use case
Matme: String (unigue per graph) Mame: String (unigue per graph)
Documentation: Text Documentation file: External Element

Extension paints: Collection
Documentation: Text

Figure 2-4. Modeling objects added to the metamofielse Case Diagram

2.3.3 Creating bindings between objects

Next, we need to define connections between thecobjpes. We do this by creating bindings
among the objects. To define an association relslip between use case objects and actor
objects, we define a binding between them. Chdiseling [GOPRR] button from the
toolbar (orange diamond) and connect the two objegtclicking them. Alternatively, you can
start by choosingonnect... from the pop-up menu of an object and then cliok other
object or use any of the other connection creatimssibilities as described in Diagram Editor
Chapter of MetaEdit+ User’'s Guide.

Creating a binding relationship will open a diatogspecify details of the binding. Binding is
the same concept as in the GOPRR datamodel of Mittal relates objects with each other
by defining their relationships and the role eadfject plays in that relationship. In the
binding tab of the dialog we can specify the relaghip type, its name and properties. This is
done similarly to that of specifying objects. Chedstach New Object... and enter at least a
name for the relationship, like ‘Association’. Yoeed to specify at least the relationship
name as it is a mandatory property. Optionally, yway also provide it with more properties,
like for example ‘Association name’.

For the binding we need to specify a minimum of twele types. We specify these in the next
tabs of the binding dialog, as shown in Figure 2rbcase of the Use Case Diagram, the
‘Association role’ can be specified similarly tossociation’ relationship. Click the tab with

text ‘First role’ and specify ‘Association role’ ah can have further properties like ‘Role

name’. Note that the name of the role is a manggtooperty. For role types we need to
specify also their cardinality constraints. Theaddf values work here well as there normally
can be only one use case and actor in the sameiasso. Later we show other cardinality

values for other bindings.

Graphical Metamodeling Example 13

Working with the metamodeling language

p———
i First role [GOPRR]: Role: Use [t S

| Binding [GOPRR] | First role [GOPRRI: Use case | Last role [GOPRR}: Icon |

Role

Minimurm cardinality: 1 -

Maxirmum cardinality: 1 -

l All OK] lCanceIAIIJ

Figure 2-5. Creating binding between ‘Actor’ andséJcase’

While specifying the second role type we can rethgealready once defined ‘Association
role’ by selectingAttach Existing Object... from the pop-up menu and choosing the already
defined ‘Association role’ from the list of availatrole types. Default values for cardinalities
work also well here.

Finally, for the second role we can choose thectiore in which the ‘Actor’ and ‘Use case’
can be connected. By default, the bindings aretedeas directed ones but if we choose the
optionCan be drawn in both directionsthen connections can be created in both ways: From
actors to use cases and from use cases to actmgs€this option and pre®K. This creates

a binding into the diagram.

In a similar manner you can also define a genextaddim relationship and a dependency
relationship for the use cases. As described inrEi@-6 the binding for ‘Generalization’ has
‘Superclass’ and ‘Subclass’ role types. The calttifinaonstraint for ‘Subclass’ role is ‘1,N’
allowing to specify multiple subclasses with thensageneralization relationship.

In Use Case Diagram, a dependency relationshipwallspecifying uses and extends

connections between the use cases. To definentiliour metamodel we add a ‘Stereotype’

property for the ‘Dependency’ relationship. Thigperty type has a predefined list of values,

namely ‘use’ and ‘extends’. If we choose an ovexid list as a data type for the ‘Stereotype’

property then the use case modeler can choose atmemgedefined values but can also enter
own values. The first value entered in the lisprddefined values is used as a default value.
First value can be also an empty line. It allowlniieg dependency relationships into use case
models which don’'t have any stereotype value.

To finalize our bindings for Use Case Diagram, \&a also add ‘Note’ object to the language
and add it to the association binding. This alleelating additional note elements in use case
diagrams to specific associations. To add the ededliote’ object to the existing binding,
select the ‘Association’ relationship. Then chodslel a New Role...from its popup menu
and click the ‘Note’ object to create the connattibor the new role we can create a role
called ‘Note part’. This role definition should X0’ value as a minimum cardinality. This
makes adding notes to associations optional.

We can repeat the same metamodeling operationadthdptional role also for other bindings
if we need them in use case modeling. The metansbaelld now look similar to Figure 2-6.

14 MetaEdit+

Working with the metamodeling language

Hote System {1}
Description: Text Mame: String (unicue per graph)
Documentation: Text

Miote part
Miote part o
0,1
. Generalization
Association
Discrimingtor:
FAesociation trng
name? Strng
As=sociation Subclass
Subclass
role Agzociation 1M
role
Dependenc
Actor Use case Fram P Y
Marme: String (Unigue per graph) Maime: String (uUnicue per gragh) 0 StE'EDHPTJfﬂ
Documentation: Text Documentation file: External Element vemdge
Extension points: Collection
Documerntation: Text Ta

Figure 2-6. The graphical metamodel for Use Casgiaim

2.3.4 Adding objects as properties

To make the metamodel complete, we need to ddiméttributes and Operations that a Use
Case may have. This is especially needed if we teaspecify a Use Case as a Class. For this
purpose we can create two new Objects called tAttg’ and ‘Operation’ and then connect
them to the ‘Use case’ object with the propertytiehship. You can choose this connection
from the ‘Property’ button of Diagram Editor tootlf@lue diamond with a short line).

For the property connection we can specify an opfitocal name and constraints. As a use
case may have multiple attributes and operationsmwst mark them as Collections in the
NonProperty of tab during relationship creationisTdollection value is shown in the diagram
with asterisk (*).

You can add additional properties for the ‘Attriduand ‘Operation’ objects if you want.
Remember to mark these objects as abstract (cl@oserrence value ‘0") so they are not
used as the main modeling concepts but are awaitaidly via the ‘Use Case’. You can also
make more complex modeling concepts by adding éurtibjects as properties, like in case of
Parameters for Operations.

Figure 2-7 illustrates the final metamodel for thee Case Diagram. You will find it is similar
to other metamodels available in the GOPRR project.

Graphical Metamodeling Example 15

Working with the metamodeling language

Hote System {1}
Dezcription; Text Mame: String (unigue per graph)
Documentation: Text

Miote part
Mote part Ly
(1N
Generalization
Azsociation

Dizerimingtor:
Asgocigtion String
names String

Azsociation Subclass
Subclass
rale Azzociation 1M
role
[o
Actor Use case Fram GRSNEERCY
Mame: String (Unigue per graph) Mame: String (Lnicue per graph) ;im;wﬁ;
Documentation; Text Documerntation file: External Elemernt i
Extenszion points: Collection
Documentation: Text To
Attribuies Opexations
*
Attribute {0} * Operation {0}
Attribute name: String Parameter {0} Operation name: String

Data type: String
Default walue: String
Sterectype: Editable List
Scope: Fixed List

Return type: String
Parameters M, |Overridability: Overridable List
* Sterectype: Owverridable List
Operation type: Fixed List

Parameter name: String
Data type: String
Direction: Fixed List
Default value: String

Yisibility: Fixed List Body: Text
Access: Editable List “isibility : Fixed List
Documentation: Text Documentation: Text

Figure 2-7. The complete metamodel for Use CasgrBim

2.3.5 Integrating languages and integrating individual

graphs

Frequently, we need to integrate individual graphh one another or integrate several
languages together. A graphical metamodeling lagguallows for the creation of such
explosion and decomposition links supported by GRRRFigure 2-1 illustrates an example
of this type of integration between four differéamguages.

To finalize our language design for Use Case Diagwee specify a language structure in
which each System object can be described in ormyraph. This is specified as a
decomposition. While this subgraph, target of dgmosition, could be based on another
language—as in Figure 2-1—we will create the linkthe existing Use Case Diagram as
follows:

First, click theCreate Graph button in the main window and choose Metamodehiattiple
graphs [GOPRR] and pre€3K. Next, enter a name for the graph (e.g. ‘MyLangtjagnd
pressOK. This opens an empty Diagram Editor providingighsly different language than

16

MetaEdit+

Working with the metamodeling language

the one used to specify the metamodel of Use Caagrén. Here you can add all the
languages to be integrated by selecting Graph [@R)PRmM the toolbar and then clicking in
the diagram. This adds a Graph symbol to the diavairea with instructions on how to
integrate it with the existing language as desdribelow.

Mo graph defintion specified;
il‘-.ﬂake a decomposition to a
imetamadel draph

Figure 2-8. Graph added to the metamodel.

Next, this can be linked to the existing metamoddke- Case Diagram in our case—hy
choosingOpen Subgraphfrom the pop-up menu and then choosing Use Caagr&in from
the list of available individual metamodels. Altatively, you could start creating a new
metamodel. After creating the link to a subgrapie, hame for the metamodel will become
visible for the Graph symbol. The pop-up selectidso allows for the modification of the
subgraph link: either by removing or adding lin@ther metamodels.

To specify a decomposition from System to Use (Qaisgram we need to add the System
concept to the diagram and place it inside theedotiraph symbol (see Figure 2-9). This
denotes that the System concept is part of theGadse Diagram. To do this you can recreate
the System concept or simply add the existing 8ysibject that was previously defined. To

do this you simply copy and paste the object frdva subgraph into the top graph. The

advantage this approach gives is that if you chahgaame of the System in one place it is
changed everywhere immediately as you are reugsingtine same object.

A slightly more powerful, but complex, way is tac& the Object button in the type toolbar in
the top graph and then shift-click in the desiréat@, which will prompt you in a dialog to
select an existing Object typeAdd Existing... from the pop-up menu in the drawing area
with no selection does the same.) The dialog liitimitially show the objects already used in
the graph, so you can press the Graph button t& sliggraphs, then choose the appropriate
graph and double-click the right object type withirThis allows you to reuse several objects
from various places at the same time. The patbvi@t to get to the right object type will be
remembered, so next time it can be selected frenB#iection History pull-down list in that
dialog.

If a language element (e.g. System in Figure 2s9at attached as part of the Use Case
Diagram (i.e. inside a graph type symbol), an eegt is shown in the Symbol element.

Use Case Disgram '

System {1} ©)

Figure 2-9. System is decomposed into another ase diagram.

To finalize the language structure, create a deositipn relationship from System object to
Use Case Diagram: choose Decomposition [GOPRRJobuftom the toolbar and then
connect System to Use Case Diagram as shown iRijuge 2-9. This structure now allows
for the creation and maintenance of a hierarchysefcase diagrams.

Graphical Metamodeling Example 17

Generating language definition into MetaEdit+

3.1

Generating language definition into
MetaEdit+

Now that we have defined our language, its con¢cgptgperties, connections and rules, next
we will generate our metamodel into MXT file formab that we can import it into MetaEdit+
Workbench for further completing.

GENERATING MXT

3.2

MetaEdit+ supports XML-based importing and expgtof metamodels. The XML format
for metamodels is called MXT (MetaEdit+ XML Type#ej. This metamodeling example
uses the same format for producing XML files frdra graphical metamodels.

To generate a MXT file from the graphical metamodelUse Case Diagram we run the
generator. In the Diagram Editor, generators canekecuted by selectingsraph |
Generate...and then choosing the required generator frontighéhat opens. A faster way is
to press the generator button that is availabtaertoolbar of Diagram Editor.

For generating the metamodel into MXT, we provite¢ alternative generators:

e ‘Export graph type to MXT file’ (also the ‘MXT’ btbn in the toolbar of the Diagram
Editor) produces the MXT file into the output ditexy. By default it is called
‘reports’ and its location is a subdirectory of etaEdit+ directory.

* ‘Export and Open MXT’ produces the MXT file and ogat in your default browser.

e ‘Export and Build MXT’ (also ‘Build’ button in thetoolbar of Diagram Editor)
produces the metamodel into MXT file and importasta metamodel into MetaEdit+.
Please note that this requires that you have righiteport XML files into MetaEdit+.
Read MetaEdit+ User’'s Guide for importing files.

The same generators are also available for thenmoelling language describing language
integration. If you execute the generator from damedel that describes multiple languages
then all the languages will be included into thexeaMXT file.

Next, you can run a generator to produce XML far tse Case Diagram that we specified
earlier. If you run the Build generator, no furtlations are needed to import it to MetaEdit+
but if you executed other generators you will neeamport them manually. To do this, press
the Import button in the MetaEdit+ main window actibose the MXT file to be imported.
MetaEdit+ User’s Guide describes the proceduresriporting files in more detalil.

WORKING AND EXTENDING THE IMPORTED METAMODEL

After importing the metamodel, you can access itusng the metamodeling tools of
MetaEdit+ Workbench, as described MetaEdit+ Workibebser's Guide. We can therefore
next complete our use case implementation and at#dion to it by using the Symbol Editor,

18

MetaEdit+

Generating language definition into MetaEdit+

3.3

make possible generators for documentation andkoigeceports with the Generator Editor,
modify dialogs in the Dialog Editor or customizeltzars used in Editors.

If we need to change the basic metamodel after iitimgpit, we can either modify the
metamodel directly using the metamodeling tools MétaEdit+ or use the graphical
metamodeling language. For the latter case we teeztjenerate the MXT file and import it
back into MetaEdit+.

EXTENDING THE MXT GENERATORS

The generators that we used to produce the MXTFE flee made in a similar way as other
generators of MetaEdit+. You are free to modifynther create new generators to export the
metamodels in other formats. To access these dgerngerapen the Generator Editor by

choosingEdit Generators from the Graph menu. Note that there are actually two main
generators, one is for generating MXT for one graptt the other is for generating MXT from

multiple graph types. To access these differeneggars you will need to open the generator
for both metamodeling languages. For defining gmtoes, please read the MetaEdit+
Workbench User’s Guide for details.

Graphical Metamodeling Example 19

Conclusion

Conclusion

In this example we have demonstrated graphical medaling. With the metamodeling
language you can design the basic structure fooraath-specific language as well as its
integration with other languages.

The created graphical metamodel can be generatedVietaEdit+ as a modeling language.
MetaEdit+ provides then modeling tool support fowith various editors, browsers, multi-
user support etc. The importing of metamodel itam using the MXT format (MetaEdit+
XML Types). After importing the metamodel the laage can be further extended by adding
notation, generators and constraints or modifyiladods and toolbars related to the language
use. To complete the language definition you neethldit+ Workbench.

The metamodeling language is tightly related to GRPmetamodel used in MetaEdit+.
However, it is implemented as any other modelingyleage in MetaEdit+. It is completely
open and thus it can be freely extended to covelitiadal requirements of graphical
metamodeling, such as cover ports or other metalingdeeeds you find relevant. You are
welcome to extend the metamodeling language asasahe generators further.

20

MetaEdit+

