MetaEdit +

Version 5.0
The S60 Phone Example

MetaCase Document No. SE-5.0
Copyright © 2012 by MetaCase Oy. All rights reserve
First Printing, 2° Edition, September 2012

MetaCase
Ylisténméentie 31
FI-40500 Jyvaskyla
Finland

Tel: +358 14 641 000

Fax: +358 420 648 606
E-mail: info@metacase.com
WWW: http://www.metacase.com

No part of this manual may be reproduced or trattechiin any form or by any means,
electronic or mechanical, including but not limitedphotocopying, without express written
permission from MetaCase.

MetaEdit+ is a registered trademark of MetaCase dther trademarked and registered trademarked
terms, product and corporate names appearing #rf@nual are the property of their respective
owners.

The S60 phone example

Preface

The S60 phone example illustrates how cellular phapplications can be modeled and
generated based on Domain-Specific Modeling (DSM).achieve this, a domain-specific
modeling language is implemented into MetaEditnglaith a generator for producing code.
Using the modeling language, a developer can dgsdigme applications using directly the
domain concepts of the phone, like its widgets senices. Generators are used to produce
the executable code, automate the deployment teheuicode in an emulator (with a single-
click), check the models and produce documentation.

This example covers both the issues related toapplication modeling as well as in part how
the DSM was made. First, we inspect the modelingudage with some examples and then we
discuss the issues of modeling language and genexaécification. Compared to other DSM
creation examples, we will focus on showing hovwnmport external symbol elements in order
to define notation as well as ports. On the codeegsion side, special focus will be put to
integrating library code and manually written cedth the models.

For exploring the S60 phone example thoroughlyfeewing things are required:

O MetaEdit+ for trying out the S60 phone languagee Pphone example can be found from
the demo repository, from the project named ‘S66ngh For further information about
MetaEdit+, please refer to the MetaEdit+ User’sdBui

O Nokia S60 SDK emulator for running the generatepliagtions and Python-interpreter
for running Python code in the emulator or in thal target. Installation instructions can
be found fromhttp://www.developer.nokia.com/Community/Wiki/Pythamn_Symbian/
This example has been developed using S60 SDK whiclamed as “2nd Ed, FP2 146
268", but there are also newer versions availablrnatively you can use a real target
device, Symbian smartphone using S60 Ul framewdl.recommend that you install the
programs using the default directories as suggdstéke installers.

We expect that you have knowledge about using MétaEIf you want to extend the DSM
further — add notational symbols, additional caaistis, generators or by modifying dialogs
and toolbars for the modeling tool — you shouldéhBMetaEdit+ Workbench or the evaluation
version available frorhttp://www.metacase.com

4 MetaEdit+

The S60 phone example

1 The S60 phone example

The S60 phone example presents a DSM languagesatooli support, specifically tailored for
developing applications into smartphones. The tafgethe code generation is Python for
Series 60, a framework which runs on Symbian srhartps. Because of this target, the
modeling language is based on the architectureyghbervices and widgets that this particular
framework provides. Naturally, it would also be gibte to model and generate code for other
smartphone frameworks in a similar way. Actuallgiite S60 already two other frameworks
and programming languages (C++ and Java) are sigopor addition to Python. DSM for
these is also implemented, but they are outsidedbpe of this S60 phone example.

In this first chapter we introduce the S60 modelemgguage and its usage scenarios. Chapter
2 continues to explain how to use the language aitlexample: we modify an application
design and generate code to run the modified egipit. Chapter 3 describes how the
language and generator were defined. Rather tlausifug on basic metamodeling capabilities
that are discussed in the tutorial examples on madaling, here we inspect selected aspects
of language and generation creation. On the lareysae we show how to define ports for
representational purposes and how to use extemaphigs for the notation. On the code
generation side, we show different ways to refen&mually written code from models.

Please note that testing the modeling language naodiels presented here requires basic
knowledge on how to use MetaEdit+.

1.1 THE BASIC IDEA OF THE DSM FOR S60 PHONE

The general objective of the “S60 phone languagetoi ease and speed up application
development. This is achieved by raising the lefedbstraction directly from programming
concepts to Ul concepts and phone services. Daiisghides the unnecessary complexity as
application developers do not need to master tkalg®f the phone architecture and related
programming model. Briefly, by using the modelimgduage a developer draws a graphical
design of the application logic using S60’s Ul edens (lists, forms etc.) and services (SMS,
accessing files, taking a picture etc). At any stafjthe design phase, a developer can run a
generator that produces application code readgXecution. The generated code uses the API
services provided by Python for S60 framework.

This domain-specific language pushes applicatiogigtle toward extreme simplicity and
easiness by using high-level Ul concepts, widgetialization that is 1:1 to the actual phone,
and by drawing behavioral logic with arrowed linésirthermore, the modeling language
covers architectural rules that prevent develofireraake designs that are illegal: ideally, if a
developer can draw the application, it will work.

1.2 AN EXAMPLE

Using the DSM for S60 phones, the design process ge follows: A developer specifies the
application by thinking about the wanted servicéshe phone, the Ul that is needed and
navigation flows within the application. These pbafedicated concepts are directly the

S60 Phone Example 5

The S60 phone example

modeling language’s concepts too. They can beteeldmom the editor toolbar and placed on
the drawing area. The modeling elements can bbdugpecified with related properties and
connected together to specify the navigation flows.

An example of an application design is illustraitedrigure 1-1. If you are familiar with some
phone applications, like phone book or calendau, yost likely already understood what the
application does. It allows a phone user to regifstea conference via text messaging, view
the conference program and speaker data or brévessonference program via the web.

Check
v) Credit card
our name? Invoice
Conference [o] ™3 Abe >
registration: n
Welcome
A |
v Registration
= h Program |text
£ase chonse Tu 10.45|combo L 4
Registration Program Tu 11:35|combo
> Program — Tu 12:25 combo +358555648606
| Unregister Tu 14:30|combo Registration
i Tu 15-20| combo +PersonNamed+, +Payment
i Options
i Program cl Y
! oS Registration made ﬁ
i Bﬁ' hitp://iwww. metacase.com .
i ¥ ¥
| SMS Cancellation Quit @
! +358555643508 | sent ﬁ - a
> -

Cancel_registration

Figure 1-1. Conference registration application

As you can see from the model, all the implemenationcepts are hidden (and are not even
necessary to know at this stage). Developers causfon finding the solution by using the
phone domain concepts, such as Note, List, Forng S&éhding and Query.

The modeling language covers also phone domairs,ruidich prevent developers from
making illegal designs. For example, in S60, ityjsical that after sending an SMS message,
only one Ul element or phone service can be trigdieAccordingly, the DSM allows only one
flow from the SMS element. This means that appbcatlevelopers do not need to master the
details of the S60 architecture and programmingehdélyou understand the phone Ul and
services it can provide, you can start developglytar phone applications.

Finally, a developer can run a generator to prodiamke and execute the application in an
emulator. If you have not installed the SDK andhByit Framework, you may still inspect the
generated code. Figure 1-2 illustrates how theiegin is executed in an emulator. This
application is generated from the model illustrated-igure 1-1. By default the generator
expects that the emulator is installed into theadiefdirectory of the SDK installer. You may

modify the target directory for producing the Pythoode by using the Generator Editor
provided by MetaEdit+.

6 MetaEdit+

The S60 phone example

Conference
registration

Conference registration 10.3g am

Your name?

Mike

Ok

Your name?

Mike

Figure 1-2. Running the generated code in an eat®@ emulator and in the phone

The generated code uses the services that thel&&@rm and its framework provide. After
design, there is no need to map the solution tde@mentation concepts in code or to modify
the generated code. Built applications should &laee better quality since typical errors
found in manual programming do not occur anymore.

In addition to generators that produce code, aldpee may also produce final documentation
of the application or run design checking by usipgcific generators.

1.3 ABOUT THE S60 PHONE MODELING LANGUAGE

The modeling concepts of the language are shovthdreditor’s toolbar. They can also be
seen from Types menu. Figure 1-3 shows the contéritee Types menu and summarizes the
modeling concepts with their notational symbols.

S60 Phone Example 7

The S60 phone example

@ ctart
'i' Skop
E Farm
O Text_editor Ul controls
E Lisktbio:x
£ List
E Mulki_query
2 Moke Widgets
1 Popup_rmenu
2 Query
<= Condition Logic
= Qpen

1 Cpen_as_standalone
SendSMS
® | Stark_exe
1 Comment:

Application start and stop

Phone services

< Relationship
Navigation flow
A Flow

¥ Back
<7 Condition

Figure 1-3. Modeling concepts for S60 phones

The modeling concepts are grouped as follows:

‘Start’ and ‘Stop’ concepts are used to specifyliappon start and end states. Their
semantics are close to Start and End states ad fowtate machines.

Ul controls (Form, Text editor and Listbox) filléhwhole display. They have their
own state behavior and richer internal structuamtbther Ul elements.

Widgets represent the different dialogs that aeglalle for the application.
‘Condition’ is used to specify logic and extra mfer the navigation flows.

Phone services represent the concepts that ateeSymbian and S60 phone services
via the Python API. These include accessing fitesed in the phone, browsing web,
sending SMS (short messages), making calls andssioge other pre-built phone
applications, such as calculator, calendar or camer

Navigation flow is specified by using three diffet&inds of relationships:
o ‘Flow’, which describes the mandatory navigatiamflof the application.

0 ‘Back’, which is used to specify navigation caneglivhen the normal default
cancel policy is not seen as adequate.

0 ‘Condition’, which is used when application logiequires specifying
conditions that could not be described by usingother modeling concepts.

‘Comment’ element is used to attach free textualcdptions as comments that are
visible in the design model.

MetaEdit+

Working with the DSM for S60 phone

2.1

Working with the DSM for S60 phone

In this chapter, we discuss how to access the eeaimpletaEdit+ and how to work with it:
First by playing around with an existing applicatidesign and then by modifying the
application using the modeling language. Finallg, generate the modified application and
run it in a PC-based emulator.

ACCESSING THE S60 PHONE EXAMPLE

2.2

To access the S60 phone example, start MetaEditgse ‘S60 phone’ from the project list
and login as usual into the demo repository. Wheetalddit+ has completed the login
procedure, the S60 phone example can be accesetheinormal MetaEdit+ browsing and
modeling tools like the Graph Browser and the DaagEditor.

PLAYING AROUND WITH THE S60 PHONE LANGUAGE

2.3

We start by inspecting already available designet®dlhey are listed in the Graph Browser
in the main MetaEdit+ window. Double-click the gnmapamed ‘Conference registration:
Application’ to open it in Diagram Editor. This djgation is already discussed in Section 1.2.

The application logic is drawn by using flow retaiships from one start state to stop states.
You may inspect the properties of any model elerbgrdouble-clicking them in the diagram
or in the Diagram Editor sidebar. You may also asagperations related to each model item
by first choosing the element and then openingdts-up menu.

MODELING TO CHANGE THE APPLICATION

The next step in working with the modeling languag® change the current application logic
by adding new elements to the model and changiagdvigation flows. The change request
for our modeling tasks is as follows:

a) If the user wants to stop the registration processtrol must go back to the start menu
for reselecting the required action.

b) If the user wishes to cancel the registration,application has to ask for a confirmation
prior to sending the SMS message.

c) Search functionally for choosing a payment methedumnecessary as there are few
options only.

Let’'s next model the application accordingly andrtlgenerate code to execute the modified
application to verify the changes. The next sestisinow how to make the changes into the
model.

S60 Phone Example 9

Working with the DSM for S60 phone

2.3.1 Adding a new relationship for the navigation flow

The default policy to navigate backwards is to goat previous Ul element; excluding
elements that made irreversible actions like santixt messages, making a phone call or
taking a picture with the camera. In our currerdigie model pressing cancel while choosing a
payment selection follows this default policy: éturns to the Query that asks the user to fill
out a name. This cancel behavior is not represdntdte model as it is default behavior and
therefore not needed to model. Now, however, wel neepecify that the application returns
back to the start menu when cancel is pressedathsteentering registrants name.

To change the default policy, we need to add a Ipeek navigation flow. Since we already
know the flow type, named in the language as ‘Batié

fastest way to create a relationship is to chobseBack’ relationship type from the toolbar,
followed by clicking the elements that we wish tmnect.

To add a breakpoint as an angle of the relationgidoyou may click the drawing area in the
places where you would like to add a breakpoint &uch option is illustrated in Figure 2-1.
You may also move the relationship and/or add lpeisks to the line for better routing
afterwards.

Cancel
Check
Credit card

Your name? Invoice

Conference @ 0]
registration: n
Welcome l—l
M
O 1
' Registration
Please choose
——

Program
— +358555648606

Registration
+PersonNamed+, +Payment

1->» Program 4 l/\\"s
Unregister

| % Mntiane |

Figure 2-1. Adding a cancel navigation relationgbighe application

After connecting the elements a dialog is openesptxify the properties for the Back flow.
In our case they are not needed so just pk#<3K . Now the design is updated and we could
generate the code and test the application by ipgetise ‘Build’ button in Diagram Editor’s
toolbar.

2.3.2 Adding a new widget element

The second request was to ask for a confirmatidoréesending a message for canceling the
registration. Here we need to add a new dialogchvliaisks the user to confirm. For this

purpose, the ‘Query’ object is most suitable. Td adjuery, press the ‘Query’ button from the

toolbar or select it from the Types menu. Thenkdlicthe diagram into an empty place to add
a new Query. This opens a dialog where we canfypibe details of the element.

For a 'Query’ we can enter its ‘Prompt’ text (likeo you want to unregister?’) and fill other
needed properties. Here only the query type is itaptt Choose ‘query’ from the list to have
a Boolean query. The Boolean query means thatipge€XK in the application continues the
flow and pressing Cancel goes one step back. @togerty fields are not necessary: ‘Internal
name’ allows to give a name for the query that wikn be shown in the generated code
(otherwise the generator gives a name), ‘Initidlgais not relevant as the selection is made

10

MetaEdit+

Working with the DSM for S60 phone

directly by using the navigation buttons, and entgfReturn variable’ stores the value into
the named variable. In the conference applicatiarh snformation is not needed, unlike for
example when sending the registration message wdedds as arguments data stored in
variables for payment method and registrant name.

After you have defined the two relevant propertibg, dialog for specifying a query should
look like in Figure 2-2. Choos®K and close the dialog. This adds the created oljettie
diagram.

[y Query: Object

Prompt: Do you want te unregister?

Internal name (opticnal):

Querytype
Initial value:

Return variable (opticnal):

v [s R pe—

Figure 2-2. Adding a query to the application desig

Next, you can delete the current relationship ftbmPopup menu to the ‘Cancel_registration’
SMS message. Then move the created query betwee®dhup menu and the ‘Cancel
Registration’ SMS sending object and connect ihwitem. Relationships can be created in
many ways, but let's use here one which is not dase pre-selecting a relationship. First,
click the Popup menu object in the diagram thatable user to choose the operation (of
‘register’, ‘program’ or ‘unregister’). Then opets pop-up menu and chooSennect... Next
click the query element you created to specify tdrget for the relationship. This opens a
dialog asking a relationship type. As we did nat-pelect a relationship from the toolbar
MetaEdit+ asks to choose among possible ones. Balick the ‘Flow’ or alternatively
choose it and pre$3K.

This creates a relationship in the model. If tHatienship or its roles have properties, a new
dialog opens allowing their entry. In our case @@ specify the value that is chosen in the
pop-up menu to follow the unregistration path.

Click the tab ‘From choice: Please choose’ andrdahie choice value as illustrated in Figure
2-3 below and presall OK in the dialog.

- Strictly speaking, the choice value is not mandatoere because other possible choices
are already specified. The code generator thus @sgeat if other values are not met, the
one with no choices will be followed. If more thare choice value is left unspecified, a
model checking will report a warning and points data that need to be specified.

S60 Phone Example 11

Working with the DSM for S60 phone

B From choice: Role: Please chooss

Flow | From choice: Please choose | To: Do you want to unregister?

Choice: Unregisterec‘

l All OK l [Cancel)\ll] l Info... l

Figure 2-3. Entering a choice value for the navayapath

Finalize the navigation flow by connecting the teglaquery to the SMS element sending the
‘cancel_registration’ message. You can create ¢haionship as done earlier or choose first
‘Flow’ relationship from the toolbar and then clithke elements in the navigation order: first

the query as a source and then the SMS sendintpageh.

2.3.3 Changing a model element

Finally, we need to remove the unnecessary seaaichffom the list element that provides the
payment options: as there are just three paymeitngp the provided search functionality for
long lists by using the phone keyboard is not ndeldere. To change the design model
accordingly, you need to modify just one propeftyhe List object. First double-click the List

object for choosing payment method and then desidecSearch field enabled’ property (see

Figure 2-4).

Check
Credit card
Invoice

Internal name (optional):
Return variable (optional): Payment

Search field enabled: O

v R R r—

Figure 2-4. Modifying properties of a design eletnen
After the modifications the application design dddook like in Figure 2-5.

12 MetaEdit+

Working with the DSM for S60 phone

, Cancel _
!! e v , "~ | Credit card
our name? Invoice
Conference [o] % Abc >
registration: n ‘
Welcome
l"’
/" Registration
= hv E Program |text
£dse chogse Tu 10 .45 |combo Y
_lII Tu 11:35|combo
J=)
—>| Program —rearam Tu 12:25|combo +358555648506
Unregister Tu 14-30 | combo Registration
Tu 15-20 | combo +PersonMamed+, +Payment
| Options
Unregistered
Program Close V
Registration made
Do you want to @ M
unregister? 2
Dq http:/iwamm metacase com .
v Y
SMS Cancellation Quit @
+358555648606 ~ | Sent e a
Cancel_registration = =
Cancef

Figure 2-5. Modified conference registration apgiicn

2.3.4 Generating the application code and running it in an
emulator

The DSM is made to support agile development: At stage we could have produced the
code and tested the application by simply running generator. After making all three
changes, we can now generate code to run the applidn a PC emulator. If the emulator is
not installed (see instructions in the prefacehthwu may only inspect the generated code.

To execute the application simply press the ‘Bublditon in Diagram Editor’s toolbar. This
produces the code and starts the emulator so youucathe generated application. After the
PC emulator starts, choose Python from the phosktale (you may need to scroll down to
see the Python icon). Then press@mions key and choosBun script from the menu. This
opens a list of available applications. Choose heéomference registration’ and pre€s.
You may now use the application to test the charyges made. Figure 2-6 illustrates the
query added.

- In the emulator, the SMS sending does not workl deds not have access to a cellular
network. The generated applications show insteata that displays the content of the
SMS message. For deployment in the product, youmeatify the SMS sending part of the
generator and remove the note code and commemtstfre actual SMS sending message.
See code generator definition for details.

S60 Phone Example 13

Working with the DSM for S60 phone

Conference

B registration
aey

Are you sure

Figure 2-6. Running the modified application aftede generation

If the emulator does not start, it is most likelgchuse Nokia S60 SDK emulator is not
installed in the default location or the newer i@rsof the SDK uses different installation
paths. You may copy the generated code into theopytlirectory in SDK or, as a better way,
modify the generator paths in Generator Editor. do this, chooseGraph | Edit
Generators... in Diagram Editor. In the opened Generator Editpose the generator
named ‘Autobuild’ from the list on the left. You Mifind it in the tree structure under
‘1Build’. It contents looks like:

$dir="C:\Symbian\8.0a\S60_2nd_FP2\'
subreport '_Generate Python file' run
external $dir 'epoc32\release\wins\udeb\Epoc.exe' e xecute

Change the two paths according to your installafidre first path specifies the location of the
python scripts and the second the location of thalator. For example, if you have installed
5" Edition SDK of Symbian the paths should be aofud:

$dir="C:\S60\devices\S60_5th_Edition_SDK_v1.0\'
subreport '_Generate Python file' run
external $dir 'epoc32\release\winscw\udeb\epoc.exe' execute

Similarly the location of the generated python figs may need to be changed too. In the
generator called *_Generate Python file’ changedihectory accordingly. For example, iff 5
Edition of Symbian SDK the directory should be:

$dir 'epoc32\winscw\c\data\python\" id ".py" write

You may also run other generators, like those pinatluce documentation, run metrics and
model checking. You are also welcome to make athanges to the application, inspect other
available design models or to create totally nepliagtions — from model to executable code.
We leave this part to you and move next to DSM enntation.

14 MetaEdit+

Creating the DSM in MetaEdit+

3.1

Creating the DSM in MetaEdit+

We have now used the S60 phone language. Next, hife ts the language and code
generation definition.

L ANGUAGE DEFINITION

MetaEdit+ Workbench User's Guide describes the tionalities for defining modeling
language in more detail. These metamodeling funatities are also discussed in tutorials,
such as the Evaluation Tutorial, the Watch Examghe the Graphical Metamodeling
Example. We focus here on two special aspectsrgfulage definition: importing external
graphics to the language’s notation and using ports

3.1.1 Importing external graphics into language symbols

The DSM for S60 phone is based on following 1:lualiation to the actual phone. The
notational symbols used in phone Ul can be thusiexpgirectly in the modeling language.
MetaEdit+ allows importing the external graphic&neents either as bitmaps (BMP, GIF,
JPG, PNG) or vector graphics (SVG). Next, we sho@ scenario on how to import graphics
as symbols to represent a modeling concept andcgivditions for its visualization.

In the S60, each query instance is visualized wittiedicated icon to show which kind of
query we have. For example a question mark is @isethe Boolean type of query. This
symbol, available as a bitmap, can be imported 8igimbol Editor by choosingymbol |
Import Bitmap... and then selecting the respective file.

Once the symbol element is added, its representadn be made conditional based on the
values given by a modeler. In the case of the gquestark it should only be shown when the
modeler selects ‘query’ as value for the ‘queryetyproperty. To add such a constraint, select
the question mark symbol in the Symbol Editor apdroits formatting setting by choosing
Format... from the pop-up menu. Then go to the condition(tae Figure 3-1) to specify the
condition.

S60 Phone Example 15

Creating the DSM in MetaEdit+

Condition source

@ Property [Quew type

) Generator

Editor...

Condition

@ String

() RegExp

Cancel Apply

Figure 3-1. Specifying symbol condition

Symbol conditions are specified by selecting fihe source and then giving a value for the
condition. The condition source can be based ompepty or on the output of a generator. A
generator-based condition source allows you to igpetmost any condition for symbol
visualization. Often, like here, the condition &skd on one property only.

As shown in Figure 3-1 a property is chosen tohgesburce and from the list ‘Query type’ is
selected. In the condition part, the value the d@mrdmust meet is specified to be a ‘query’.
This is the same value as specified in the metamadea result, when a query type is chosen
to be a Boolean query in the model a Question meadhown. Respectively those symbol
elements of Query whose conditions are not meharshown.

3.1.2 Defining ports

The S60 language uses ports as representatioma e so that main Ul controls like Form
can be related to other elements via two kindsasinections. Ul controls have also own
menus and their specification in the language gémented using a port. If you select a form
in the model you can see that the symbol has twoectables from which relationships can
be drawn: a larger main symbol and a smaller fdidbp menu.

To see how the representational port is definedhape Symbol Editor for the Form object
(see Figure 3-2). Then choose the connectable shewrred rectangle related top the Options
menu. The connectable is selected when its targiet pn the middle is selected too. If the
target point is not selected, then you may haveehdhe Options text element. The Symbol
Editor shows the chosen object in the active fglthe status bar.

16 MetaEdit+

Creating the DSM in MetaEdit+

. Symbol Editor - Form)
Symbol Edit View Align Help

H&DH 9 HIDLOE TOOCN2 D Lulicds

[] Rectangle
[] Rectangle
™, Line

T Text

T Text

™, Line

T Text

[] Rectangle
iy Image
iy Image

Connectable
Connectable

Property Value
X 30,0, 160,
Extent 48,9872 x

<[4 P
Color. Fill: | [

Active: Connectable Grid: 10 @ 10 Snap Show

Figure 3-2. Form symbol

Open theFormat... menu from the pop-up menu to see the port dedmitjiven for the
selected connectable. Figure 3-3 shows that theemable uses port ‘Left softkey’. As
pressing the left softkey in the real S60 phonenspghe Options menu, the port is hamed
accordingly.

S60 Phone Example 17

Creating the DSM in MetaEdit+

3.2

i Format Connectable

Connectable | Position and Size

Port(s):

» Left softke

Sticky targetpoint

] Grid sensitive

Cancel Apply

Figure 3-3. Relating ports to connectable

Ports are defined with the Port Tool similarly ther language concepts. In this case, the port
is just used for representational purposes so ltiedt ‘softkey’ port does not have any
properties. For details on Ports see MetaEdit+ \emkh User’s Guide.

CODE GENERATION: RELATING MODELS AND CODE

Often it is not possible to generate all code diyeitom models. We have already existing
code, & party libraries or the DSM could not be made tec#fy all the functionality using
domain concepts. In this section we represent smppeoaches by using the S60 example to
integrate models with manually written code.

3.2.1 Generator provides integration with the component

library

Usually, the best approach is to create a compdii®aty or a component framework that
provides prefabricated software building blocks tttaan be used when developing
applications. This was exactly the case of S6@saservices are made available via the Python
framework. The code generator then calls diredtly $ervices provided by this framework.
Creation of such a component library does not reegdg require a lot of effort as such
components may already exist from earlier developraéforts and products, and just need a
little tweaking.

To illustrate how a code generator calls the sepvif the framework, let's highlight the case
of Query. You can see the code generator for therfabject by selectinggraph | Edit
Generators... in the Diagram Editor. This opens Generator Edi@hoose the generator
named ‘_Query’ from the list on the left. You wiilhd it in the tree structure under ‘!Build’.
Your view in Generator Editor should then look like Figure 3-4. It shows the complete
generator definition for producing Query code.

18

MetaEdit+

Creating the DSM in MetaEdit+

Generator Edit View Breakpoint Format Help

DE|E# DB D & ALY Hx|B0/B 1 UA|

'] Graph

I _Open_as_standalone » || Object

I _Popup_menu Port

¥ Queny Role
_Relationship code Relationship
_Return variable name | Templates

I _SendSMS || General

Report ' Query'
/% Produce single field gquery code */
'def ' subreport ' Internal name' run '(}:"' newline
'4 Query: ' :Prompt; newline
if :Return wvariable \(optionall); then

' gleobal ' subreport ' Return variable name' run newline
endif
' ' subreport ' Return variable name' run ' = appuifw.guery(u"'
:Query type; "'""
if :Initial wvalue; then

if :Query type; ="number' then

', ' :Initial value;

else

, u"' :Initial wvalue;

if ' subreport ' Return variable name' run ':' newline
subreport ' next guery element' run

' else: # Cancel selected' newline

subreport ' Back' run

endreport

Figure 3-4. Calling the service of the underlyingniework

The highlighted area in the figure shows the pathe generator that makes the actual call to
the Python framework. In other words, it takesdhé from the model to produce the call to
the API. Code produced by the highlighted genenadiefinition could look like:

PersonNamed = appuifw.query(u"Your name?", 'text’)

This code is actually taken from the Conferencestesgion application where a query
element is used for entering registrants nameKggpee 1-1). The first highlighted line of the
generator creates the variable in which the qualyevis saved, followed by the call to the
framework, i.e. to appuifw module and its querygm. The rest of the highlighted generator
fills the needed parameters by taking them fromntioglels. Actually, the second highlighted
line creates already the needed two parameteithdosample code shown above: the prompt
text and the type of query (i.e. ‘text’). The re$the generator includes the initial value to the
call if such is specified in the model.

As this small example illustrates, the DSM raigesdbstraction and hides the complexity as a
developer who uses the modeling language doeseaw®at to know about Python, learn and
master the phone framework or know the programmindel when making the applications.

3.2.2 Referring to libraries from the models

The S60 language also allows specifying Python abeetly in the models. The language is
thus extended from pure domain concepts to inchadke concepts too. The places for using

S60 Phone Example 19

Creating the DSM in MetaEdit+

code, however, are restricted to only a few plattesse where it makes sense to apply a code
library code or write code manually. Also, the cammcepts in the modeling language are
restricted into two: referring to library code oriting code manually.

Consider the calculation example shown in Figu& Jhis model is also available in S60
project. This small application asks for two numhatues and shows their sum in a note
dialog. The calculation algorithm is not specifieg using the modeling concepts but rather
entered as a textual specification into the note.u&e here Python for writing the algorithm
as the generator can take this textual specificatial use it directly in the generated code.

This simple example calculates the sum of two integers. I

Give A Give B
3 123 %3 123

Y
=e

Cluit

oxd

Figure 3-5. A design model referring to a codedipr

Double-click the note element to see its properfrether than showing text inside the Note
element its content is now treated as a code. Thalacode comes from a function library
and a function ‘calculate’ is chosen. Avalue an@lBe are then provided as arguments to the
function. Note that these two values are definedetisrn values for the two queries made
before the calculation.

Libraries are usually considered to be either black or white-box. In the case of black-box
we see just the interface (here: ‘calculate (aoyf) not its implementation. For the S60 case
the language is defined to be white-box: conteffitthe library function can be seen and
modified. Double-click the Function used propexgltulate (a,b)’ to see its implementation.
Figure 3-6 shows the implementation and descripgiche calculate function.

20

MetaEdit+

Creating the DSM in MetaEdit+

w Function: Object: Function used in Mote -ﬁ
|| Function name:

Parameters: ab

Function body:
first=u"First input: " + str(a)
second=u"5econd input: "+ strib)
sum= "sum = "+str{a+h)
string= first+' '+second+" '+sum
return string

Documentation:
This function calculates sum of two parameters and
returns sum value as string.

v [e R re—

Figure 3-6. Selecting a library function

The S60 language allows defining functions whiledeiing as well as importing them from
an existing library into MetaEdit+ by using the ARInctionality. Such functions can be
imported completely or you may choose to just makineir public interface available in
models. In the case of S60 language, the code af@narxpects that Functions are imported
completely, so their content is also generated tioapplication code. Alternatively, a code
generator can import the function from the librdaying generation.

3.2.3 Entering code directly in models

Instead of referring to or importing libraries, i always possible to have one or more
language elements just for writing code directlpithe models. This is obviously not as good
an option as having a framework or libraries, butelected places it can be useful. In the case
of the S60 language, a Form has for instance danght'save validation’ function that is run
to check that the changes made into a Form areatoin the modeling language such ‘save
validation’ function is entered into a textual peoty.

For a more complex case let's look at the condigt@ment in the S60 language. Condition
allows specifying additional rules, checks and pthevigation information that goes beyond
the direct DSM support. In the ‘RestaurantFind@plecation (see Figure 3-7) a condition is
used to check that the given zip code is legabuincase, it means that a zip code has 5 digits.

S60 Phone Example 21

Creating the DSM in MetaEdit+

Select restaurant
by name Entername
by type L bynsme | T | 555643606 Restname
axit | +Hame
4
| \\m‘t
by type
Y
Restaurant type SMS message
- sent i
Greek . o
[talian
A

Cancel
i

Provide location ZIP
code % 123

555648506 Restiype
+Type+, +Location

==Falze

ZIP must have 5 @
digits

Figure 3-7. Restaurant finder application with adidon for ZIP code validation

For the checking purpose, a condition named ‘legipl is added to the diagram. Double-click
it to see its details as shown in Figure 3-8. T@endition’ object has two properties: a
‘Condition variable’ and ‘Condition’. The code istered as a Python script so that it can be
used directly by the code generator. The codensteither True or False. This value is then
used for guiding the navigation: if the length loé¢ zip code is 5 characters a SMS message is
sent, otherwise a note is opened informing thaP ‘Elust have 5 digits’ before going back to

the ZIP code entry.

Cendition variable: Iegal_zir.i

Condition:
if len(str(Location)) ==5:
legal_zip=True
glse:

legal_zip=False

[oK

| (o) (o)

Figure 3-8. Restaurant finder application with aditon for ZIP code validation

22 MetaEdit+

Creating the DSM in MetaEdit+

Instead of having here code written directly, itiiso possible to use library functions similar
to the calculate function that we discussed earlidiis would allow having a library of
common conditions that would then reused in desigdels.

In addition to the ‘Condition’ object the S60 laage allows to write manual code also to the
same places where the use of libraries is posdittieere is no reference to a library function
then code is expected to be written directly ifite text field. The text entry can be written
using the MetaEdit+'s internal text editor or byings your favorite editor. The Options
settings in the MetaEdit+ main window allow youdpecify the use of external text editor.
See MetaEdit+ User’s Guide for details.

3.2.4 Regeneration with protected blocks

Final option is to generate code with protectecchkdo Generate partial code which can later
be modified without loosing the manual changes wihencode is regenerated. In the case of
the S60 language such is not needed as the modatiggage already identifies places for
writing the code. For the sake of demonstrationyéwe@r, we will add a protected block
definition to our current generator so that manualritten condition code can later be
modified.

While defining protected blocks, we need to consige things: identify parts of the code
where manual changes are needed and define hokslkdwe described in the code. For the
demonstration we want to generate condition cotbedrprotected block.

- Better use of protected blocks would be here ifntloeleling language would not have a
conditional code concept at all and the generatauld create a template or skeleton
code based on the model, like variable names, erthiel protected blocks.

Protected blocks must be defined such, that tleele vorks according to the target language.
Therefore we need to first define the how protediatks are presented in the generated
code. MetaEdit+ provides a default block definitioat for our case of Python we need to
specify our own. Consider the following generatefimition for producing a protected block
into a generated Python file.

filename subreport '_default directory' run id ".py
md>5start '# MEPMD5 ' md5stop newline merge
subreport '‘Generate Python script' run

close

endreport

The first line of the generator specifies that bsgeneration is used for a file named using the
modelid and ‘.py’ extension for a python file. The secdim& defines how checksums are
presented and here the only change to the defalules is the use off* used for making a
comment in Python.

Next, we need to modify the generators where caddet written as protected block is

produced. For the condition code we must open teettor Editor and its generator named
‘ Condition’. For this generator, we specify startd end for the protected block by using
reserved words ahd5id for start andnd5sumfor the end.

In this case, we want to include only one valuenfrine model into the block: a condition
code. Figure 3-9 shows the generator definitionrwietected block definition is added into
the generator. The highlighted line starts the lbleth md5id tag, followed by the unique id
within the file. Here, theoid refers to the unique identifier MetaEdit+ gives &l model
elements. The line includes also comment text aob te block can be identified from the
generated code. The ‘Do’ clause then takes theeviatum the model and indents every line to

S60 Phone Example 23

Creating the DSM in MetaEdit+

follow Python conventions to indent code insidauaction. Finallymd5sum is used to end
the protected block.

i Generator Editor for Applic:

Generator Edit View Breakpoint Format Help

Da|ﬁ=|a&’ﬁﬁfhl'9e|!>%|&ﬂlr|lx|%%| B IUA
lGraph filename ... write ... close =
I _Back Ohbject filename ... append ... close J

[> _Back code __[|Port filename ... merge ... close
_check back flows Role filename ... read

I Relatienship (filename..) encoding ..
I Form Templates filename ... print

_Form field validation functic - || General md5id ... md3block ... mdSsum

Beport ' Conditiom'
/* Produce condition code */
'def ' type oid '():" newline
' # Condition terms' newline
if :Condition; then
! ' mdSid oid "PROTECTED CONDITION CODE BLOCE' mdSblock]
do :Conditiom; { ° ' id newline }
' ' md3sum
endif
' # Condition results' newline
subreport ' next condition element' run
endreport

Figure 3-9. Generating code with protected blocks

Now the generator produces checksum for the blbakis evaluated during regeneration. If
changes are made into the block, its content iggapnerated. In case of the Restaurant finder
application the generated code for the conditiakddike:

def Condition25_1763():
Condition terms
MEPMD5 25 1763 PROTECTED CONDITION CODE BLOCK
if len(str(Location)) ==
legal_zip=True

else:
legal_zip=False
MEPMD5 4a958480fd0245a0626fd58c2be1f277

- See MetaEdit+ Workbench User’'s Guide for detailsisimg regeneration support.

24

MetaEdit+

Conclusion

4 Conclusion

In this example, we have demonstrated a DSM fonphapplication development. With the
domain-specific language we can model applicatimisg phone concepts and execute them
in a PC emulator or in the real phone device.

On the DSM definition side we focused on a few sre& language design: ports and
importing external graphics to language notation.te code generation side we described
some options for relating manual code with the apeleerated from the models.

The modeling language is implemented as any otlmteling language in MetaEdit+. It is
completely open and thus it can be freely extentteadover additional requirements of
modeling or code generation. You could for examptalify the generator to produce native
Symbian C++ code from the same models or extendnibaeling language to cover a larger
part of the phone framework than that provided lyghén for S60. The choice is yours
because with DSM you control both the languageelkag the generators.

S60 Phone Example 25

