MetaEdit +

Version 5.0
Web Application Example

MetaCase Document No. WA-5.0
Copyright © 2012 by MetaCase Oy. All rights reserve
First Printing, 2° Edition, September 2012.

MetaCase
Ylisténméentie 31
FI-40500 Jyvaskyla
Finland

Tel: +358 14 641 000

Fax: +358 420 648 606
E-mail: info@metacase.com
WWW: http://www.metacase.com

No part of this manual may be reproduced or trattechiin any form or by any means,
electronic or mechanical, including but not limitedphotocopying, without express written
permission from MetaCase.

MetaEdit+ is a registered trademark of MetaCase dther trademarked and registered trademarked
terms, product and corporate names appearing # rfanual are the property of their respective
owners.

Web application example

Preface

The web application example illustrates how UML ¢tenused (and abused!) to specify web
applications, and how complete working applicatioas be produced from those models. To
achieve this, a domain-specific generator is imgleted into MetaEdit+. Unlike the standard

generators supplied with most UML tools, which cauy create class and method skeletons,
this generator produces the full code that we i@neach application.

Using the example, a developer can design simptabdae web applications using the
familiar core concepts of UML. We will also see hgwaing beyond simple examples requires
increasing amounts of twisting and redefining of Uskmantics, resulting in a language that
is hard to use, and no longer “UML” in anything Inotation.

Normally, a web application would be written in enger-side programming language. Since
you might not have a server handy, or perhaps d@mvée the right to upload applications and
create databases, we will make this web applicatiarpurely in your browser. We will create
HTML5 pages for the user interface, JavaScripttifier behavior, and use an SQL database
running in the browser for the back end.

To explore the web application example thorougtiig,following things are required:

O MetaEdit+ for trying out the web application langea For further information about
MetaEdit+, please refer to the MetaEdit+ User’sdBui

O The web application patch, to add web applicatienegators and example models to the
‘UML examples’ project in the MetaEdit+ demo regosy.

O A web browser supporting HTML®Veb SQL Databasécurrently Chrome, Safari or
Opera), with JavaScript support enabled.

We expect that you have a working knowledge of Mditr. If you want to extend the
modeling language or generators further you shddde MetaEdit+ Workbench or the
evaluation version available frohttp://www.metacase.cam

4 MetaEdit+

Web application example

1 Web application example

The web application example breaks the rules of DSbdit in a good cause. Most developers
have seen UML used for specifying databases: danap to tables and attributes to columns.
What UML can'’t do so well is specify behavior: eviewe enter the names and parameters of
operations, or add a state diagram, we have omwisthow we want to break that behavior
down into chunks, but still UML has not helped weate the contents of those chunks. But
what if we could do without behavior altogether?t@ibe more precise, if we could specify
behavior once for a whole class of applications] &wave each application follow that
behavior guided by its own data? If that were senethe humble UML class diagram might
be enough to specify any of a range of useful apptns.

Can an application’s behavior come from data? @fs®m we are all familiar with this on a
simpler level. In some way, all applications arédgd by their data: if we want to show the
surname of a person, we need to display differbatacters depending on whether the person
is John Smith or Jane Doe. The code doesn'’t cothairdata, just the variable names which
are replaced by data at runtime:

writeln("First Name: " + firstname);
writeln("Surname: " + surname);
writeln("Age: " + age);

We can go a step further, though: rather thanngitiode like the above, we can write generic
code that says “print all attributes and their ealu

for (i=0; i<attributes.length; i++){
writeln(attributes[i] + ": " + values]i];

}

With code like that, we can supply any number of kimd of attributes, and things will just
work. For example:

var attributes = [

{name:"First Name", datatype:"string"},
{name:"Surname", datatype:"string"},
{name:"Age", datatype:"int"}

I;

var values = ["John", "Smith", 43];

We thus have datadlues) but also data about that dasdt ibutes). Data about data is
often called meta-data, and programming that tedesantage of it is called meta-data
programming. With a little meta-data programming ea specify the generic behavior of
simple database web applications once, and leeide generated from the models.

In this first chapter we show how to install thebaggplications example and try it out on a
sample model to see how the generated applicatimkswn practice. Chapter 2 looks at how
UML is used for this example, and the limitatiorfsuML when going beyond simple web
applications. Chapter 3 describes how the geneaaiidomain framework were defined.

Please note that testing the modeling language naodiels presented here requires basic
knowledge on how to use MetaEdit+.

Web application example 5

Web application example

1.1

OPENING THE WEB APPLICATIONS EXAMPLE

1.2

Installing the Web applications example will addnsogenerators to UML Class Diagrams
and two graphs, Football and Ordering, to the UMaraples project.

Open MetaEdit+, select the demo repository, sdleetUML examples project, and press
Login. If you are using the evaluation version &mid is your first login, you will be asked to
enter the evaluation code you received in yourwatan email.

AN EXAMPLE

Select UML examples in the Projects list and dowlilsk Football in the Graphs list to open
the following Class Diagram:

0. 1 -
Team League
homeTeam
J name 1 J name
J nickname
| Ehll'tl:-l:lh:lr EIPE'_'JTE'EH'.I
1
/N
.1
1
0.* 0.* 0.* 0.*
Player Match
J firstHame J date
J lastName J homeGoals:integer
J gealsiinteger J awayGoalsiinteger

Figure 1-1. Football league web application

ChooseGraph | Generate... and under “Class Diagram [UML] generators” chotdéehb
Application”. The files will be generated and ydarowser will open on the home page of the
application.

If the browser that opens does not support Web $Qtabase (e.g. currently Firefox and
Internet Explorer do not), you will see a red wagin the page stating this. Install Chrome,
Safari or Opera, set it to be your default browaad run the generation again.

On the home page of the application you will se shme UML model as above, and can
click any of the classes there to go to a pagefitering and editing those elements. For now,
click the League class, and you will see a pagaeviieu can enter a name for your league.

MetaEdit+

Web application example

League

Enter a League to store in the database:

name |Premiership

oK)

Teams |New| name | View All
Matches (New | date [View Al

Figure 1-2. Creating a League

Type “Premiership” and press OK. The form will remaallowing you to create more
leagues, but one is enough for now. Below the Oobuyou will see that a league has a list
of teams, but that is currently empty. Similarlyete is a list of Matches, also empty. The fact
that a league has a name comes from the “naméjwatrin the “League” class in our UML
diagram. The lists of Teams is included becauseamlie has an association to zero to many
Teams. Similarly, a League is a composite aggregati many Matches.

Press the New button next to Teams to go to the pagcreating and editing teams. There
you will see the reverse of the association betwa=mgue and Team: each Team is in exactly
one League. The field for League is thus shownaoarybrowser as a pull-down menu, from

which you can choose any existing league. You han fill in the name, nickname and shirt

color for this team, and press OK. You might wantiteate a couple more teams while you're
here.

In the same way as each League had many Teams,Teach has many Players, and by
pressing the New button next to Players you cart staating some players. The Team for
each new Player is chosen from the pull-down memuhe Player page. (This may seem
counter-intuitive if you are used to object-orightainking, where a Team would have a list
of Players. In relational databases there is r&t"“lilata type, so a Team does not refer to
Players at all; instead, each Player refers tbetam by a unique name or ID of the Team.)

Player

Enter a Player to store in the database:
Team | Manchester City E| Edit |

firstMame
lastMame

goals |0

oK)

Figure 1-3 Creating a Player

You will notice that the “goals” field contains a&rp. That is because Player's “goals”
Attribute is defined with data type “integer” inghmodel. If no data type is specified in the

Web application example 7

Web application example

model, a simple string is assumed. You can alsoifype default value in the Attribute; there
is no need to quote strings there, as all valuesianply placed in the field as-is.

After creating some players for the teams, you irtigive something like this:

Team

Enter a Team to store in the database:
League |Premiership |Z| Edit |

name |Manchester City
nickname |Citizens

shirtColaor

=3
C'|E
xl.'l:l

Players firstName lastMame | View All
di De Hart |De|ete

dit | Vincent Kompany |De|ete

Edit | Sergio Aglero | Delete

‘ E
[-

M

4 most recently edited Team entries:

League name name nickname shirtColor
Edit Premiership Manchester City Citizens blue M|
Edit Premiership Manchester United Red Devils red M|
Edit Premiership Arsenal Gunners red Delete |
Edit Premiership Tottenham Hotspur Spurs white Delete |

| New | | View All | | Delete Al |

Figure 1-4. A Team and its Players

As you can see, the team now lists its playerdy Witttons to jump to edit a player. At the

bottom of the screen is a handy list of the mosemdy edited teams, each with an Edit button
S0 you can quickly jump to it. Since one of thecp of information about a Team, its

League, is a reference to another page, that shpws the list as a link. Below the list are

buttons to create a new team, view the full listesfms, or delete all teams.

Because all the data you enter is stored by youw$er in a local SQL database, if you close
your browser the data is still there. All your tesaand players will appear again when you
open those pages, e.g. by generating again orysigahg to the HTML page. (Each browser
keeps its own database, so if you switch browsers yata will not appear in the other
browser.)

8 MetaEdit+

How UML is used for these web applications

2 How UML is used for these web
applications

The core modeling concepts of UML are hopefully ifean We only use Class Diagrams, and
within them only Classes, their Attributes, Asstioilas and Aggregations; inheritance is
ignored. Attributes can have data types of stritg default, mapping to varchar(255)) or
integer (int is also accepted), and can specifaulefalues (with no quotes). Relationships
are always one-to-one or one-to-many, i.e. at rmostend can specify a cardinality greater
than one (0..*, 1..*, *). An Association role orrPenust be marked as Navigable for that link
to show up in the web forms; Association roles slaomopen arrow when Navigable, Parts do
not. (At least not in standard UML notation: witheMEdit+ you can of course change the
Part symbol definition.)

2.1 FINE TUNING THE USER INTERFACE BY ABUSING UML

Defining association or aggregation relationshigdsaextra elements to the Ul to show the
items linked by that relationship. For exampleg, e League field at the top of Figure 1-4 or
the Players table there. By default, a linked itesi show up in the tables as its first
Attribute, e.g. the “name” of a Team or “firstNan®’a Player.

To show more details, we need to find somewhetbemmodels to specify what to show for
each relationship. Conveniently, the roles of thadationships have a property, Qualifiers,
that allows you to specify Attributes that qualitye relationship. According to the UML
specification, a qualifier is intended to provideiadex or key for the set of related elements.
Although that is not the semantics we want, thihes only place where we could record the
information we need, so we will abuse UML for owroneeds. This is a hack to achieve what
we want, at the expense of making the models ngelostandard UML, and requiring users to
learn the new and unfamiliar semantics we attachedamiliar UML concepts.

You can thus specify which attributes you wanttiovg in the fields and tables of the Ul for
the linked element by adding Qualifiers on the rmethat element. For example, the 0..*
Association role to Player from Team specifiesstfitame” and “lastName” as qualifiers, so
in Team’s table of Players in Figure 1-4, each &ayfirst and last names are shown. To add
new Qualifiers to a role, double-click the roledito open its Properties dialog, open the pop-
up menu in the Qualifiers box and chodsil Element.... For our purposes, it is enough that
you type the same name for the Qualifier attritagdor the Attribute in the Class.

If you want to do things perfectly, you could iretechooseAdd Existing..., which will let
you refer to the exact Attribute in the Class —t@cting you against any later changes to its
name Add Existing... will show the following dialog, listing all existg attributes.

Web application example 9

How UML is used for these web applications

i _ - N
i Select an Attribute [UM S|

lﬁraphs] [My Instances] l Other Instances] l Load I [Selecl:ic:unHisi:c:urg-I

Selection list Contents list Already selected
+d22_617%int: Attribute [UF =
+date: Attribute [UML]
+dateReceived:string: Attrik
+dayMs:final int = 24*60%a0
+dayMsint: Attribute [UML
+debugPanel:Panel: Attribu
+debugPanel:Panel: Attribu =
+decompositions:Hashtabh
+decompositions:Hashtabh

+discountinteger: Attribute

+display:AbstractDisplay: &

+displayMethod:int: Attribo

+displayMethod:int: Attribo

+extent:Point: Attribute [UN

+firstMame: Attribute [UML ~
k

[ok | [cancel | [Help |

Figure 2-1. Adding an existing Attribute as a Qiuedi

Since there are many models in the UML examplegegptothis list is quite long. The easiest
way to get to an attribute is to type ahead inl¢fteSelection list: if you type “+first” (the + is
the prefix to show a public attribute), the selewtin the list moves down to the first matching
attribute. Double-clicking it will add it to theght-hand list, the collection of all the attributes
you want to add in the Qualifier. You can find thiaer attributes by typing ahead again; if
you mistype, just press Space to reset the typadabeffer. Other ways of finding objects in
this window include navigating via Graphs or Othestances, and the Selection History list
entries which work like bookmarks of the places yave recently added existing elements
from. See the Component Selection Tool sectiorhé MetaEdit+ User's Guide for more
details.

10

MetaEdit+

Generators and domain framework

3 Generators and domain framework

To best understand a modeling language, you neeexample model. Similarly, to best
understand a generator, you need the code gendratecan example model. We will look
here at the Football example, which is composeatiefollowing files:

File Description Same for
all apps?
Football.html The home page for the applicatiorthv model screenshat No
Team.html The main HTML page for Teams with theadattry form No
TeamList.html The HTML page to list all Teams No
* html, *List.html Corresponding HTML pages for Player, League and Match | No
sample.css The Cascading Style Sheet Yes
sample.js Google’s utility functions and Gearsafiation prompt Yes
globals.js JavaScript global variables and funation Yes
entry_common.js JavaScript functions for form aetidages Yes
entry_form.js JavaScript functions for form pages esY
app.js JavaScript functions for the home page Yes

The generators and their subgenerators are shaaw.bEeam.html is generated b¥ntry
and its subgenerators — and similarly for eachscikayer, League and Match. TeamList.html
is generated byEntryList . Football.html is generated by thA&pp generator.

ieh Application _webhdppTransiators _appds
P _sampleds
P |_dlohalz)s
_entry_commands
_zaveScriptFiles
M |_ertry_farmds
entry_form js
_sampleCss
_ErtryHTMLstart
sample.css E
_Entry _ErtryHTMLform _EntryHThLforeignFields
Clazs ' ’
Team.html
_EntryList _EntryHTRLmidl _EntryHTMLforeignTables
Clazs ' 4’
TeamList.html
_ErtryJSparams
_Eritry JSvariable
e :‘
Football.html

Web application example 11

Generators and domain framework

3.1

We will concentrate on Team.html, as seen in Fidudle At the start of Team.html is the form
for entering the data for a team. The list of 4eréentries at the bottom of the page is largely
reused as the content of TeamList.html. The reshefHTML file includes the script files
above, and provides the meta-data and code needéltedms. Below, we will go through

these sections in more detail, showing the linkveeh the model, generators, and generated
code.

REFERENCES TO OTHER PAGES

First come any fields that are references to qthges, e.g. the League field:

o LN

‘ Team I\ League ‘

Each Team has a reference to one League, so tlefmageam includes a list for selecting
the appropriate League, along with a button to jumghe page to edit that League. The
HTML for these is generated by¥ntryHTMLforeignFields , resulting in the following:

League | Premiership |E| |Edit |

<td class="foreignLabel"> League</td>
<td>
<select id="fk_ League” style="width:20em;"></select>
</d>
<td>
<button type="button"
onclick="editForeign(‘fk_ League');"
id="fk_ LeagueButton">
Edi t
</button>
</td>

The set of choices in the field will be set latgr JavaScript. The meta-data specifying the
links to other pages is generated later kyntryJSVariable into global variables
wholeForeign andassocForeign , which are in turn concatenated iritForeign

In this case, there are no Aggregation / Whole-Pelgtionships, savholeForeign s
empty.

/I Links from this table to another table by a fore ign key
wholeForeign =];

assocForeign = [

{name:"fk_ League",pageName:" League" foreignCols:[" name"]}

I;

12

MetaEdit+

Generators and domain framework

3.2 LOCAL FIELDS ON THIS PAGE

Next come the fields for Attributes defined in tRikgss:

i

Team

J name
J nickname
J shitColor

_EntryHTMLform generates a table row, label and input field smteAttribute:

name
nickname
shintColar
<tr>
<td class="label"> nane</td>
<td valign="middle">
<input type="text" id=" nane" style="width:20em;">
</td>
</tr>
<tr>
<td class="label"> ni cknane</td>
<td valign="middle">
<input type="text" id=" ni cknanme" style="width:20em;">
</td>
</tr>
<tr>
<td class="label"> shi rt Col or </td>
<td valign="middle">
<input type="text" id=" shi rt Col or " style="width:20em;">
</td>
</tr>

The meta-data specifying the local columns in tiiédabase table is generated later by

_EntryJSVariable into global variableols .
/I Simple local columns in this table
cols =
{name:" nane",datatype:" var char (255) ",defaultvalue:""},
{name:" ni cknane",datatype:" var char (255) ",defaultvalue:"},
{name:" shi rt Col or " datatype:" var char (255) ",defaultvalue:"}

I

Web application example 13

Generators and domain framework

3.3 REFERRERS TO THIS ENTRY FROM OTHER PAGES

Each Team has many Players:

1 -
Team | 0. ‘"“*| Player ‘

|‘\

Below the input fields, EntryHTMLforeignTable generates the HTML for tables listing
such one-to-many linked entries:

Players ew | firsthame lastName | View Al |

<tr>
<td class="foreignTableLabel"> Pl ayer s</td>
<td>
<table class="foreignTable" id=" Pl ayer Table">
<tbody></tbody>
</table>
</td>
</tr>
In the generated HTML, there is only an empty phatger table: the content, including the
buttons and column headers, is filled in at runtirg the JavaScript function
displayForeignRows in entry_form.js . Although the header row could have been

generated as static HTML, the meta-data about oherms is needed anyway for filling in
subsequent rows. It was thus easy enough to usgathe code and meta-data to create the

header row too.
The meta-data specifying the foreign key columnsthrer database tables that point to this

table is generated later by _EntryJSVariable into global variable
referredAsForeign
/I Links to this table from another table as a fore ign key
referredAsForeign = |
{name:"fk_ Teant, pageName:" Pl ayer", tableName:"tbl_ Pl ayer",
foreignCols:[" first Nane"," | ast Nane"]
}

I

14 MetaEdit+

Generators and domain framework

3.4

LIST OF RECENTLY EDITED ENTRIES OF THIS TYPE

3.5

_EntryHTMLmid generates the list of 4 most recently edited Temtnies as an empty
placeholder table, along with its buttons to cremtéew Team orView All or Delete All
Teams. Again, the contents of the placeholder sallél be filled in at runtime by the
JavaScript.

League name name nickname shirtColor
Edit Premiership Manchester City Citizens blue Delete
Edit Premiership Manchester United Red Dewils red Delete
Edit Premiership Arsenal Gunners red Delete
Edit Fremiership Tottenham Hotspur Spurs white Delete
| New | | View All | | Delete Al

<table id="listTable">
<tbody></thody>
</table>
<p>
<button type="button" onclick="gotoNew();">New</but ton>
<button type="button" onclick="gotoList();">View Al I</button>
<button type="button" onclick="dropDBTable();">Dele te All</button>
</p>

INCLUDE COMMON SCRIPT CODE

3.6

Next in the HTML file comes a series of <scriptatsments to include the JavaScript files
mentioned above. Since their contents are the sama&ll pages in these web applications,
they are saved once and included here by refesgiticeéhe src= attribute of the script tag.

<script type="text/javascript" src="sample.js"></sc ript>
<script type="text/javascript" src="globals.js"></s cript>
<script type="text/javascript" src="entry_common.js "></script>
<script type="text/javascript" src="entry_form.js"> </script>

If you would prefer to see their contents inlindit ¢he Web Application generator, change the
line near the top to the following:

$inline= 'yes'

When you run the generator agaimcludeScript will include the script contents inline.

META-DATA AND SCRIPT CODE FOR THIS PAGE

The rest of the HTML file is a long section of J&eapt that checks for page arguments,
initializes some global variables with the metaadfair this page and its fields, and calls the

Web application example 15

Generators and domain framework

initialization code defined in the included Javacfiles. EntryJSparams generates
some code to parse the URL and set rowlD, whiclrgscwhich particular Team is being
edited._EntryJSvariable creates the meta-data for the database schemélabdsed

on the Attributes and relationships in the modsl;output has already been discussed in the
earlier sections.

At the end of the script we call theit() function, defined irentry_common.js . This
will open the database for this application (Fothtband create or update the table definition
for this page (Team). Updating the table definitimre allows us to add new Attributes to the
model and regenerate, then simply refresh the fmagee the changes. The init() function next
initializes the display. It calldisplayRecentRows() , defined in the same file, to fill in
the table of recently edited entries defined in&bdve. If this page was loaded with a rowID
parameter in its URLinit() will also fetch the values of the selected Teatu the fields

in the form (3.1 and 3.2 above), ready for editing.

Finally, we call theinitForeign() function, defined inentry_form.js ; the same
function is also defined as empty for the main hgmage and list pages, as they have no
foreign form fields to update.initForeign() populates the options list for foreign
columns referring to other entries, e.g. the Ledagld in the Team form in 3.1 above. It also
callsdisplayForeignRows() , defined in the same file, to fill in the tables feferences

to this entry from other entries, e.g. the lisPtdyers in 3.3 above.

16

MetaEdit+

Conclusion

4 Conclusion

In this example, we have demonstrated how domagiip generators can help even a
general purpose modeling language. Of course kottangs further the next step would be to
create a proper domain-specific modeling langudajldng into account the kinds of web
applications you want to build. Many people havétklmuch modeling languages, which can
be divided into three categories:

1) for the in-house use of the organization that ectétem;

2) available as commercial tools, suchEndix, Skyway, andlronSpeed

3) for anyone to use, such A&bML.

As we move down the list above, the languagestrgach a broader market and thus become
less domain-specific — and hence cannot be as didgititwith your own requirements on the
kinds of applications you want or the kind of coael want. Conversely, the less experience
you have with web applications, the more you dtelyi to accept someone else’s “one size
fits all” solution.

In a slightly different approach, the databases larspecified in online forms or wizards
rather than a graphical modeling language, anadbelting application can be automatically
hosted online, insulating you still further froncthmical issues: examples inclu@aspioand
the sadly demiseBabbleDB

The defining question for your choice of technolagythis: how much do you know about
building web applications? The less you know, tleerlikely you are to be happy that some
tool has already made many decisions for you. Qaelg the more you know, the less likely
you are to be satisfied with the one-size-fitssallutions of existing tools — or then if the
existing tool offers many solutions, the more fratd you are likely to be with having to fill
in a myriad of forms and wizards, when you feel gould achieve the same results as quickly
by hand coding. If you are building many web amtligns, the tools would force you to jump
through the same hoops again for each applicatioleast with hand coding you could reduce
the work by abstracting some common parts of yolut®n into frameworks.

If the choice was just between off the shelf taafgl hand coding, most people who were
capable would code their own web applications. Tinde¢ed is what generally happens today.
With domain-specific modeling tools, there is adhthoice: abstract the common parts still
further. The parts that describe what kinds of i@pibns you want to build go into the

modeling language, your framework becomes a dorfmramework, and the instructions for

how to use the framework are built into the gemratow, you can build web applications of
exactly the kind that you want, faster than in ahyhe previous ways. You can also give the
modeling language to other people, who might blkeskat designing web applications but not
at implementing them. In all likelihood, those pleowill prefer a modeling language other
than UML.

Web application example 17

