MetaEdit +

Version 5.5
Heating System Example

MetaCase Document NBLC-5.5
Copyright © 28 by MetaCase Oy. All rights reserved
First Printing,3" Edition, August2018

MetaCase
Ylisténméentie 31
FIi 40500 Jyvaskyla
Finland

Tel: +358400648 606
E-mail: info@metacase.com
WWW: http://www.metacase.com

mailto:info@metacase.com
http://www.metacase.com/

No part of this manual may be reproduced or transmitted in amy 6r by any means,
electronic or mechanical, including but not limited to photocopying, without express written
permission from MetaCase.

MetaEdit+ is a registered trademark of MetaCase. The other trademarked and registered trade
terms, product anadorporate names appearing in this manual are the property of their respi
owners.

DSM for heating systems

Preface

The heating systemexample illustrates howheating applications can benodeled and
generatedbased onDomainSpecific Modeling (DSM) To achieve this,two integrated
domainspecific modelinglanguags are implemented in MetaEdit+along witha generator
for producingPLC code Using these modeling language a developercan desigrheating
applicatiors directly using the concepts ofthe domain such aspipes, pmps, valvesand
pressure sensqralong with their related behaviosuch asopening and closing valves
Generates are used to produce the&xecutablecode, integrated into a PLC software
development environment (TwinCAT¥eneratorsare also used forprodicing installation
guidelines, documentation, and model checking

The rest of this documerdescribes the language and generatorsdfareloping heating
systemsas well as how they weiimplementedvith MetaEdit+.First, we briefly inspect the
modeling laguages with some examplesand then wediscussthe modeling language and
generator specificationThese topicswere set by the LWC2012anguage workbench
challenge lfttp://languageworkbenches et

To explorethe heating systeraxample thoroughlythe following things are required:

¢ MetaEdit+ for trying out théanguages and generatof$ie PLC heating systeexample
can befound from the demo repository, from tipeoject namediHeating systeii For
furtherinfomat i on about MetaEdit+, please refer t

¢ Beckhoff TWinCAT software systeffior running the generated applicatiohwinCAT can
download from http://www.beckhoffde/english.asp?twincat/default.htmDownload
TwinCAT 2.11 R2, Build 2038There maylsobe newewersions available.

We expect that you havmasicknowledge about using MetaEdit.you want to extend the

DSM solutionf ur t her] add additional copstraints, gengradisodr by,
modifying dialogs and toolbars fothe model i ng tool T you shoul
Workbench or the evaluation version available fidip://www.metacase.com

! MetaEdit+ User Guideittp://www.metacase.com/support/55/manuals/

4 MetaEdit+

http://languageworkbenches.net/
http://www.beckhoff.de/english.asp?twincat/default.htm
http://www.metacase.com/
http://www.metacase.com/support/55/manuals/

DSM for heating systems

1 DSM for heating systems

The heating applicationsupport in MetaEdit+ includes two integrated languages and a
number of generators. In addition to editors, MetaE@ilso provides various browsers,
predefined generators, multser support, etc [1].

The main window for bresing the models and accessing the editors and generators is shown
bel ow. Hedlingesystéin p r bas deen opened armbntains one P&l Diagram
describing the piping and instrumentati@nd five Heating applicatios which run in the
controllers.

Repository Edit Browsers Metamodel Help

v X 2 & EE DewR B0 LEE
Graph Browser | EE Type Browser | QU Object Browser | EIE Metamodel Browser |

Projects Graphs Contents: Objects

P | HomeHeating: P& Diagramy B1: Boiler

[£5 BoilerController: Heating application t%," Bl T52: Sensor
[£5] HeatController: Heating application 2 cold water: System end

[£5] PurnpController: Heating application [=<] CV1: Valve

[£5 RadiatorController: Heating applicatior t%," F51: Sensor

[£5] ThreeValveController: Heating applicat 2 Gas: Systern end
2 hot water: System end
G HU1 B1: Burner
=] HU1 CV2: Valve
t%," HU1 T54: Sensor
t%," HU1 T55: Sensor
[=<] MV3: Valve
(= P1: Pump
t%," P1 553: Sensor
li) R1: Radiator

< | 4‘_|_.l[.l. |_'

Filter: ™~ Filter: ™+
Default

[Heating system '] Tree: [AII subgraphs Show: [Objects

Figurel-1. MetaEdit+ main wiidow showing the contents of heating syspzoject

Heating system example 5

DSM for heating systems

1.1 SYSTEM STRUCTURE

The P&I Diagram speciés pipe connections amortge variousdevices: pieces of equipment
and instrumentatian The behavior of each controllable device can dpecified in a
subdiagram using anothdomainspecific language

Graph Edit View Types Format Align Help

Bol4hh + | LPOE X

R

4 Hest exchanger -

Heating unit
4 € Sensor = energy
: near the process company own water
12: out of sight (F R\ D >

oo}

k3: near the process cold Water N
ed: out of sight

pl: near the process

n

s
cold water

radiator
watercycle

p2: out of sight
energy
company

T2: near the process
Th: in the control room
Th2: in the control room

0: in the control room district
heating

V1: near the process
v2: nearthe process

Heating unit

Property Value —
5 Graph type P&l Diagram < " i
Systemname | Home gt N ,
Description Sample system
Use visualizatic| Yes
extra
pressure
conservator
overflow

< .

MNumber of errors/warnings: 0

Active: None Grid: 10 @ 10 Snap [Show | 2 100% ~ @

Figurel-2. Structure: Pipes and Instrumentation

1.2 CONTROL BEHAVIOR

The Heating application language specifies the control logic of the systerstates of the
controller, conditions based on instrument datd various actions to control the instruments.
The instruments are the same as in the P&I Diagram and they can be accessed fromsoth type

of diagrams.

6 MetaEdit+

DSM for heating systems

-

- Heating application: BoilerController, Februa

Graph Edit View Types Format Align Help

B4R H B LPOE X
0=PrPe 080X <] [}

4 Q Start -
Start

I State

Initializing

]

Meniter boiler temp
@ Stop
= Cendition
4 [>] Comparison
=

g

Initializing

:

IMonitor boiler |
temp

=

@ Burner
Boiler
Bl

() Radiator

-
DontWarmUp—je B1 aff—DoWarmU
\ =

)
A
A,

==
==

2
IrTempSetp
ointLow

IrTemperatu
re

- ¥
IrTemperaty IrTempSetp
re ointHigh

Property Value

£ Graph type

Heating applicati
System name | BoilerController
Description Boiler warming bi
Use visualizatio Yes

< [m)

Mumber of errorsiwarnings: 0

Grid: 10 @ 10 Snap] Show | /2 100%

Figure1-3. Behavior of boiler controller

1.3 GENERATORS

Generators are available for both languadé® nost important generators are those tfur
P&l Diagram

T 6expFil esd demnthefarma of TWINEAT .exfites. The genmted code
provides the control logic blocks, its simulatiand additional resources like
datatypes and task structures. The generated code follows the same style and
conventions as the reference implementation.

T 6TwinCATO6 provides i NRLE@ gonteot toob the codef ds T wi n
produced by O6éexpFilesd is imported into -
the platform providing the basic building blocks and compiled for
execution/simulation.

T 6l nstall ata lamdarepstaliatdru guielesn HTML listing the type of

instruments and the amount of pipe needed (calculated from the length of individual
pipes).

T 6Doc 6 gdoecumentatioreof the systemaa®/ord document.

In addition to these generators other generators are defined for medkinch(showrat the
bottom of Diagram Editor), generating interface descripticarsd producing a textual
description of the piping for those who prefer text instead of diagrams.

Heating system example

Implementing the DSM language for the heating system domain

2.1

Implementing the DSM language for
the heating system domain

This section dscribes how domaispecific modeling languages and generatare
implemenedin MetaEdit+

DEFINING LANGUAGE ELEMENTS

The abstract syntax and rulesthe modeling languagean be defined in MetaEdit+ with a
graphical metamodeling language or with fapased metamodeling toolslhe concrete
syntax is defined with a WYSIWYG vector graphics Symbol Editor. The semantics is defined
as translational semantics with generat& outline herehose tools used to defin¢he
languages for heating systenfsor a conplete description of these tools, seetaEdit+
Wor kbench 0Bserdés Guide

2.1.1 Graphical metamodeling

Language elementthe abstract syntax part of tHanguage can be defined with a graphical
modeling languageThe fgure below shows the partial metamodelaofanguage used to
specify control behavior of central heating systema state transition diagram language
definition for Heating applicatios A blue rounded rectangle symbol indicates an object type
or a set of object types, an orange diamond symibalvs a relationship type and a green
circle is used to describe the role types.

2 MetaEdit+ Workbeoh Guide http://www.metacase.com/support/55/manuals/

MetaEdit+

http://www.metacase.com/support/55/manuals/

Implementing the DSM language for the heating system domain

Start {1} Comment Thermostat Thermostat
Diescription: Text Objects in condition Mame: String
binding: 01 Description: Text
State, Stop
Stop
Burner Burner
From Condition—— pame: String (unigue per graph)
T 0.1
o]
Tranzition) P“"_"p
Purmp condition Mame: String (unique per gragph)
04 Pump type: Radio Button Set
To Sensor

Mame: String (unigue per graph)
ZENSOF, Mourting: Fixed List
condition ™ Measured variable; Cverridable List

=it Transtion 01 Function: Overridakle List

State name: String (unique per graph) From

Description: Text Bioilér condition

01 Boiler
Marme: String (unigue per graph)

Radiator
candtion
Hest exchanger \ " 04 Radiator
» Pump action action valgetin v ElEEgEkion Marme: String (unigue per araph]
Candition Y on oM 0,1
041 ' !

Objects in binding: il

Candition, Objects in Ohjects in Mame: String (unigue per graph)

Comparison binding: binding: Mumber of valve ends: Radio Butte

Burner, Pumg Fadistor, Boiler Yalve type: Radio Button Set

Closing by Radio Button Set

Figure2-1. Metamodel of heating agphtion language (partial)

After theabovemetamodels drawn inthe Diagram Editor of MetaEdit+it can be instantiated
and tested immediately with the modeling editors providing full editor functionality
(copy/paste, undo, replace, trace, print etc.ceghelanguage definitiois complete it can be
givento the developers using MetaEdit+ Modeler.

2.1.2 Form-based metamodeling tools

The form-based metamodeling toatandefinethe abstract syntarf the language, along with

its rules and constraintsiotation and generators for model checking, code generation,
documentation generation etc. The fdoased tools are integratedth the other tools in
MetaEdit+,allowing the metamodeleto access and trace between all the language elements:
e.g. from abstract syax to notational symbols, from generator definition to metamodel, from
debugged generator to models etc.

Most importantly, the definition dianguageelements is automatically applied in the various
modeling editors (Diagram, Matrix, Table), browsersagidr, Object, Type) and generators.
This supports agile and incremeniguagelefinition: updates to thenodeling languagean

be tested immediately and showarthe language users.

Heating system example 9

Implementing the DSM language for the heating system domain

Language concepts (abstract syntax)

FHE E=FE) The Graph Tool defines the
. - ..] individual languages. Here
= . definition for adP&l Diagrandis
O & Save and Ciose =z | @ given. A diagram itself ha
properties, and each propehss
a more detailedlefinition. For

Graph Tools Help

Basics | Types | Bindings | Subgraphs | Constraints |

Name P& Diagram example,each P&l Diagram ha
Ancestor Graph ao Sy em nwhiocheid its

_ identifying property (marked
Project [FAl Wi t h.Itis dfdgta typeString
Properties and its value must be unigqu
Local name Property name Data type Unique? t here canot

*Systemn name Systemn name | String T

Target Twind Target TwinCAT |String (External E F |§| .
Description | Description Text F The Graph Toolalso includes

also a description field t
document the languageThe
description given is used in tf
language helpavailable in the
modeling editorsHelp | Graph

Diagrams with the same name.

Description

A Piping and Instrumentation Diagram (P&I Diagram) =
describes the piping of the process flow together with the L4
installed equipment and instrurnentation. .

Typéeé
2] Graph Tool: P& Diagran [The Types tahin the Graph Tool
.- shows the individual languac
Graph Tools Help .
= — — concepts: object types,
&= EEEEEE =z | @ relationship types and role type

Thesedifferent kinds of concepts
can be addedr removedhere

Objects Relationships Roles from the language.
Boiler — Pipe - Pipe
@ Burner = Pipeln
(= Pump - PipeOut
() Radiator

£ Sensor

& Systern end
3 Thermostat
[=] Valve

[Vessel

+ loint

r 1 Comment

10 MetaEdit+

Implementing the DSM language for the heating system domain

5 Object Tool: Sensor hesEhmeanl| For eachtype a form
5| based metamodelin
Object Tools Help .

- tool shavs its

Save and Close e BB ® definition. Here an

Object Tool shows the

hme | Sensor definition of 6 Se n :

Ancestor Object an ObjeCt type. The

Project P&l metamOd.eler . ha

speci fied

Properties Name, Ancestor type,

Local name Property name Data type Unique? PrOjeCt four different

*Name Sensor name String F property types and a
Mounting Mounting String (Fixed List) F Description
Measured variable Measured variable String (Fixed List) F ’

Functien Functien String (Overridable Lis|F The property dialoc

for entering values fo
instances of the typ
is automatically
more connection points, Flow sensors need two connection points, others L created based on tf
need one. properties defined; i
can also be manuall
laid out if desired.

Description

Measure physical characteristics of the gas or fluid stream (e.g. pressure,
temperature, flow). Sensor unit can connected to the pipe with one or

Other kind of types, like property types, port types, role types and relationship typ
defined similarlywith the formtbased matamodeling tools.

= | Property Tool: Sensor name for 5... gm | In the PfOpertieS list for

Sensor(above, we see that :
Sensor has a property, who
D = T Save and Close @ Loc a | npae-ney | .
whose Property type name
6Sensor rdefint®ro
Ancestor Property of thed S e n s o mproperty
Project Pal type is shown here in a
Property Tool. It is of Strinc
data type, usea normallnput
Widget Input Field Field for entry, does not hav
e any default value andnust
have amandatory value. Th
constraint ormandatory value
is specified usig the regular
expression (0

Property Tools Help

MName |Ser150r name

Datatype String

Value Regex

Description

Mandatory name of the sensor.

Heating system example 11

Implementing the DSM language for the heating system domain

Graph Tools Help

Save and Close | | jr:ﬁf

@

Decompositions

Objects Graphs

Explosions
Objects/Rels/Roles

@ Burner: Ohbject
(= Pump: Object
@ Radiator: Object
[=<] Valve: Object

@ Eoiler: Ohbject Heating application

el m | E BT

Save and Close

® |

| Basicsl Typesl Bindingsl Subgraphs| Constraints

In each graph of this type, these constraints apply:

Sensor may be in at most 2 Pipe roles
b stem end may be in at most 1 Pipe relationship

Pump may be in at most 1 PipeOut role

Property "Mame” in Beiler must have unique values
Property "Mame" in Burner must have unique values
Property "Name" in Pump must have unique values
Property "Mame" in Radiator must have unique values
Property "Mame" in Sensor must have unique values
Property "Mame" in Thermostat must have unique values

Property "Name" in Valve rmust have unique values

Add Constraint For:

Comectvity v| | add | | Edit | | Delete |

The Subgraphtab in the
Graph Tool sets which
types of element in thi:
type of graph can have
subgraph, and of whe
type.Thesubgraphmaybe
of adifferent typefrom the
parent graphas inthecase
of heating systems for
example aBoilerin a P&l
Diagram can have its
behavior described inan
explosion subgraph of typ
Heatingappl i .cat

Constraints are specified with the fetrasedools as a part of the metamadgle basic legal
structure of relationships is specified on the Bindings tab, and extra constraints can be
specified on the Constraints td¥lore complicated rules or those that should be checked only

on demand can be spfed with generatorsBelow some constraints are shown for the P&l
Diagram. The constraints are given as data and entered by choosing from the existing set of
constraint types. For exampleaché Sy st e m baveblfly omaey O Pi ped
connectedo it.

Ohbjects of type

’ & System end

may be in at most
1

) Roles
@ Relationships

of type

’—Pipe

[

ok | | cancel |

Figure2-2. Defining constraints dhe language

12

MetaEdit+

r el

at

Implementing the DSM language for the heating system domain

2.1.3 Notation

The graphicalnotation of the DSL is defined witthe Symbol Editor. It can be opened from
the formbased tools while defining the languéagabstract sgtax. Below, aSymbol Editor
shows the symbol fahe6 Bo i | e rtype. Obj ec t

| Symbol Editor - Boile

Symbol Edit View Format Align Help

HEoH |9 D LOBTOONL2ID Ll s

s

om |
Z Polyline

T Tet
Connectable
Connectable
Connectable

Property Value
Y 60, 40
Extent 60 x 60
Condition Generato
Start angle 1800
Stop angle 0.0

4 |

4 [
Color: [. v] Fill: [|:| v] Style: E Weight: | 1 -

Active: Ellipse Grid: 10 @ 10 Snap Show

Figure2-3. Symbol definition for the Boiler

A symbol consists of multiple symbol elements, and each symbol element can be drawn here
as avector graphic element like a rectangle, ellipse or freeform polygon, or as an imported
bitmap.The symbol of 6Boil erd6 consi slabslshaning t wo
the value of the NMme property of the Boiler. The symbol definition alsshows threeed

connectabl es, each with a crosshair for r el

el

at

at which the incoming line stopé.Bo i | ercahnediabléor 6 Pi ped cormroidect i ons

water coming in at the bottom, and another liot water going out at the toghe third
connectablen the middle is the defauliised to draw connections for instrumecdsitrolling
the boiler(or for a separate flow, e.g. hot water to taps rather than central heating radiators)

Existing symbolsopar t i al symbols can be i mported fro

from SVG vector graphics files. Individual symbol elements can be made conditional

depending on the model data, and textual symbol elements can obtain their contents from

fixed text, propay values, or the results of generatodstemplate element can be used to

make parts of the symbol repeat or to include subsymbols based on other elements in the

model.

The icon used for a given language concept in lists, buttons and menus is autlymatical

produced by scaling down the conceptdés symbol

by drawing a bespoke icon for that concept in the Symbol Editor.

Heating system example 13

Implementing the DSM language for the heating system domain

2.1.4 Generators

The MetaEdit+ Generator System is used to define generatoms Yariety ofneeds. th the
case ofheating systemsgenerators are used to produce code, model ghackardware
installation guide in HTML, Word documentation of the systamd to sendhe generated
code directly intahe TwinCat environment.

MERL, a domainrspecific languag for generator development, is used to define generators.
The figure below shows Generator Editor for P&l Diagrams, with tNERL definition for
function block generation. The generator script is shimthe bottom half of the window, a
hierarchy of geeratos at the topleft, MERL templates in the topenter andthe concepts of

the languagéthe metamodelptthe topright.

ﬁenemr Editor for P& Diagram [EEECR -

Generator Edit View Breakpoint Format Help

DEHIEE# 4+ DHH DC 4% AL X D& B I UA

[Hierarchical '] Graph || [Boiler -

4 TwinCAT-autobuild - + Burner
4 expFiles Part » Pump

> _Pltranslators Role =P Radiator
 _main Relationship 4 Sensor

s Templates MNare: String

: _componentType General Mounting: String
> _controllerStates Control Measured variable: String
> test_main External IO Function: String

qunctionSlock[}

/% fuction declarations */

variable "files' append subreport ' default directory' run 'FB "id%file '.exp
' close

filename subreport ' default directory' run 'FB_"id%file '.exp' write
'{* BPATH := "'\ /HomeHeating'' *)' newline

'FUNCTICHN BLOCE FB_' id%firstUpper%var newline newline

'{* " id ' function block generated from MetaEdit+ *)' newline

if :Description; then '(* ' :Description ' *)' newline endif

newline

' VAR INFUT

END VAR

VAE OUTPUT

END VAR
VAR" newline
_instrumentTypes()
foreach . () {
do explosions { basicStates()}

Figure2-4. Generator definition in MERL

The Generator Editor supports syntax highlighting, static code analysis, error detection,
navigation among subgeneratoasid content assistanfi@ showing the metamodebncepts

and inserting their names ihe genertor. MetaEdit+alsoprovidesa full MERL sourcelevel
debugger with breakpoints, interrupts, conditional breakpoints, live editing of variables etc. In
addition to the Generator System, MetaEdit+ ofter&\P| based on webervices/.Net/SOAP

for accessinghe model elements using other systems.

As well as being available for running via menu operations, generators can also be added to
the action toolbar ofmodel editors, and a custom icon can be defined for them in the Symbol
Editor. Generators can also bged for individual language concepts, to control how they are
displayed in lists and texts, e.g. by combining a First Name property, a space, and a Last
Name property.

14

MetaEdit+

Implementing the DSM language for the heating system domain

2.2 DEFINING A P&I NETWORK OF THE HEATING SYSTEM

At any point of time during thiEanguagedefinition, the partiallycreated languagean be tried
out in MetaEdit+ using théuilt-in editors, browsers, multiser support, printing functions
etc. This enables fast prototyping andremental development of the DSM support

The dagram below follas closely the visualization proposed in the LWC2012 assignment.
For example, pipes which are marked to be thermally insulated are shown with thick lines,
pipes which are jacketed are shown with double lines, and pipes ddicbt haveany cover

are showrwith thin solid lines. This visualization was defined with the Symbol Editor.

" P& Diagram: HomeHeating, March 21, 2012, 12: Em
Graph Edit View Types Format Align Help

2 c%—* @ Eh i) -LJIJ- D p|:| EZ| X | & E& mstatation Twincat

QoM 2K + 11| —

4 Boiler -
4 i@ Bumner BITS
HU1 B1 T

WY3

4 C) Radiator hutawatelr ? 'I‘ o . o B?
R ’—/
4 ll__—) Sensor 2

BLTS2 cold water
F51

HUL T54

HUL T55

P1553

TS6

Property | Value |

[E5 Graph type P&1Di
Systemn name Home
Description | Sampl
Use visualizat] No

HU1 Cv2

]

1

4 I

Number of errors/warnings: 0

14 [m] »

Grid:10 @ 10 Snap [Show | 2 100%

]
Y

Figure2-5. Instruments and their pipe connections

The Diagram Editor shows the description of the LWC2012 heating system using the DSL.
The £cond toolbarow shows the main concepts of the D®odels elements are created by
clicking the domain concepin the toolbar and thedlicking in the diagram to atiit. During

model creation and editinthe Diagram Editor checks that the DSL definition is followed:
both by checking the definition of the metamoaeldby running the checking scripts written

in MERL.

Heating system example 15

Implementing the DSM language for the heating system domain

2.3 IMPROVED VISUALIZATION OF THE P&I| NETWORK

The noation shown above follows the wddhown and widelyused notation of Piping and
Instrumentationbut we can also enhancenitth improvedcoloring and error annotatioifhe

figure below shows the same heating application using these visualization enhrdaceme

These visualization optionschne s et on or @frfopferoam s egva B hué

" P&I Diagram: HomeHeating

Graph Edit View Types Format Align Help

& | FPHEH D o [D L LIET| X | B B nstatation Twincat
@omo 2 IA[) + 1| —
el Buoiler o
Bl
4 @ Burner
B HU1 B1
a3 Pump
B PL
4 l:;‘ Radiator

hot water
R1
4 (— Sensor 2

BLTs2 cold water
Fs1

HUL T54
HUL TS5
P1 553
T56

Property

[£3 Graph type PEID
System name| Home
Description | Samp
Use visualizati| Yes

HU1 Cv2

D]

1

FS1 <Sensor= has only 1 pipe connections. Two is needed
MV3 =<Valve> has only 1 pipe connections. At least two is neaded
Mumber of errors/warnings: 2 =

Active: None Grid: 10 @ 10 snap [C] Show | 2 100% = @

Figure2-6. Visualizinginstruments irthe P&l Diagram

The editor also shows possible errors and incompleteness information as defined by the
language engineer. Here two errors/warnings are reponedS1Sensoneeds a second pipe
connection,and the MV3 Valve also needs one anore extra pipe connectionBouble

clicking the elements in the error report selects cbeesponding elemerih the diagram
allowing you to update it easily

While the P&l network is showheregraphically it can also be presented textually for those
who prefer textual specifications. Textual specifications can be gener&eph(|

Ge ner a)from thediagram and the properties of the individual pipes and instruments
can be accessed for editing from the text.

16 MetaEdit+

Implementing the DSM language for the heating system domain

2.4 CONTROL BEHAVIOR OF THE HEATING SYSTEM

Behavior is defined with another graph type:
is defined for each relevant instrument of the P&l Diagrahe Diagram Editor below shows
t he behavi orPloThe lanbuage & Pased o a state machint is domain

specificin that it only offers accegs conditionssupported by each instrumgnt i ke 6 Boi | er
flame detection)and to theactionsavailable for eacinstrument(like turningad Pump é on or
off).

EBES +Fpn9
Q@ sw=le
4 Q@ Start

Start
4 0 State Initializing

Control_Pump

Initializing

i:_,‘\J Stop

= Condition
E] Comparison

4 @ Burner
HU1 E1

Control_Pump:

Buoiler
() Radiator NOTbFlame .
“~.. Detected -

Property Value

[£5 Graph type Heating applicati
Systern name | PumpCentroller
Description Pump is put on o
Use visualizatio Yes

4 |1

MNumber of errors/warnings: 0

Active: Mone Grid:10 @ 10 Snap [Show | 2 100%

Figure2-7. Behavior of pump controller

The behaviomodel refers directly to the instruments defined in the P&l Diagram. In other
words, agiveninstrument is the sanie both kinds of diagramis no need to updatersamein
multiple places or keepthervaluesin sync The Diagram Editor (as well as other editors and
browsers) allowsyou to tracebetween these two kinds of diagrams as well as see how
instruments are (rayed. By selecting n f &adn the elemerds popup menu you can see the
places it is usedThe languageslso support consistencghecking acrosshe different
diagrams. For example, @ behaviormodel uses instruments that are not definedhin
structual piping and instrumentation model they are reported as errors/warnings in the P&l
Diagram.

For more complex conditions and comparisons the languagéstmagn constructsavailable
from the toolbarlike all other language constructs. Belos diagram fo Heat Controller
shows a constr ai Rlanlhka 9 d@thwadmmng. ®hdexahipleatsasmods
entry and exit actian While they are not necesgamlas the same functionality could be
specified via state transitions too, they were added doh#fating application language to
mirror the reference implementatiarore closely

Heating system example 17

Implementing the DSM language for the heating system domain

2.5

~ Heating application: HeatController, February 24, 2012, G

Graph Edit Yiew Types Format Align Help

Baldpm(oc|+ D LOE|X

=050 005X ¢/ B
4 @ Burner & -
HU1 B1 @ =
4 Boiler
Bl off
4 (I Radiator L HU1 w2
Rl Intializing entry pl>3<]
Lf'j Pump y
f__;j“ Sensor =
=3 Thermostat T
4 [=] Valve l E",‘Q'
HU1 Cv2 n | LN
= /0” \
B1 —=bWarmlp-= ! \\ HU1 Cv2
Property Value = A 1 \
= - y " Wait for heat control burner Dﬂ
[=5 Graph type Heating applicati . | ’

reguest Y F
System name | HeatController - J — SN
Description @ >tarmp-< Nf:JT o
Use visualizatio| Yes | [

4 . b

Number of errors/warnings: 0

Active: Mone Grid: 10 @ 10 Snap [show | 2 100% = @

Figure2-8. Behavior of heating controller

SPECIFYING INTERLOCK/CONSTRAINT DEFINITIONS OF
THE CENTRAL HEATING SYSTEM

Usually the best place to define invariants is in the definition of a modeling language itself or
in the generator. This waye language usealways follows the constraints even withot
knowing about them. Therefore the interlock/constraint definition can be supported as in
Section2.1, defininglanguageelements

If there is a need to model the interlocks/constragxglicitly and per systenmthen one
solution would beto add a new DSL with concepts for interlodhat DSL would stillbe
integrated with the other DSLAN example ofaninvariantis thatif the burner is on then the
pump must be running. Below suelrule is definedalongwith an emergency shdown
action: if the pump is not on and the burner is running thiemburner isturnedoff. Other
constraints could be added to the language too, butleestready available DSL constructs
can be used to describe invariants/constraints.

18

MetaEdit+

Implementing the DSM language for the heating system domain

Start checking

EMENENTY
shutdowyn ‘
MOThls0n < '
-------- AMD
cted
v OFf
Stop pump —entrw;a

Figure2-9. Modeling invariant/interlocks with the DSL

2.6 GENERATING STRUCTURAL DEFINITIONS AND STUBS
FOR A TARGET

Structural definitions include foexample the data types of component types as well as various
controller states. These are generated as a ptre ahole code generation process available
from the toolbar othe P&l Diagram. A sample of the generated data type coda rfadiator
contoller is shown below.

TYPE E_MDL_RadiatorController_SM_States :
(* RadiatorController states generated from MetaEdit+ *)

(

(**** Initial States ****)

MDL_RadiatorController_SM_ Initial,

(**** Normal States ****)
MDL_RadiatorController_SM_INITIALIZING,
MDL_RadiatorController_SM_MONITOR_ROOM_TEMPERATURE

);
END_TYPE

In addition to the code, other structural definitions are generatedtedigure below shows
the generated installation guijdehich lists allthe instruments needeadhd also calculatdsow
much pipe is needed.

Heating system example 19

Implementing the DSM language for the heating system domain

Figure2-10. Generated installation documentation

20

MetaEdit+

