

Version 5.5

Heating System Example

MetaCase Document No. PLC-5.5

Copyright © 2018 by MetaCase Oy. All rights reserved

First Printing, 3
rd
 Edition, August 2018

MetaCase

Ylistönmäentie 31

FIï40500 Jyväskylä

Finland

Tel: +358 400 648 606

E-mail: info@metacase.com

WWW: http://www.metacase.com

mailto:info@metacase.com
http://www.metacase.com/

No part of this manual may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including but not limited to photocopying, without express written

permission from MetaCase.

MetaEdit+ is a registered trademark of MetaCase. The other trademarked and registered trademarked

terms, product and corporate names appearing in this manual are the property of their respective

owners.

DSM for heating systems

4 MetaEdit+

Preface

The heating system example illustrates how heating applications can be modeled and

generated based on Domain-Specific Modeling (DSM). To achieve this, two integrated

domain-specific modeling languages are implemented in MetaEdit+, along with a generator

for producing PLC code. Using these modeling languages, a developer can design heating

applications directly using the concepts of the domain, such as pipes, pumps, valves and

pressure sensors, along with their related behavior such as opening and closing valves.

Generators are used to produce the executable code, integrated into a PLC software

development environment (TwinCAT). Generators are also used for producing installation

guidelines, documentation, and model checking.

The rest of this document describes the language and generators for developing heating

systems, as well as how they were implemented with MetaEdit+. First, we briefly inspect the

modeling languages with some examples, and then we discuss the modeling language and

generator specification. These topics were set by the LWC2012 language workbench

challenge (http://languageworkbenches.net).

To explore the heating system example thoroughly, the following things are required:

¿ MetaEdit+ for trying out the languages and generators. The PLC heating system example

can be found from the demo repository, from the project named óHeating systemô. For

further information about MetaEdit+, please refer to the MetaEdit+ Userôs Guide
1
.

¿ Beckhoff TwinCAT software system for running the generated application. TwinCAT can

download from http://www.beckhoff.de/english.asp?twincat/default.htm. Download

TwinCAT 2.11 R2, Build 2038. There may also be newer versions available.

We expect that you have basic knowledge about using MetaEdit+. If you want to extend the

DSM solution further ī add notational symbols, additional constraints, generators or by

modifying dialogs and toolbars for the modeling tool ī you should have MetaEdit+

Workbench or the evaluation version available from http://www.metacase.com.

1
 MetaEdit+ User Guides, http://www.metacase.com/support/55/manuals/

http://languageworkbenches.net/
http://www.beckhoff.de/english.asp?twincat/default.htm
http://www.metacase.com/
http://www.metacase.com/support/55/manuals/

 DSM for heating systems

Heating system example 5

1 DSM for heating systems

The heating applications support in MetaEdit+ includes two integrated languages and a

number of generators. In addition to editors, MetaEdit+ also provides various browsers,

predefined generators, multi-user support, etc [1].

The main window for browsing the models and accessing the editors and generators is shown

below. The óHeating systemô project has been opened and contains one P&I Diagram

describing the piping and instrumentation, and five Heating applications which run in the

controllers.

Figure 1-1. MetaEdit+ main window showing the contents of heating system project

DSM for heating systems

6 MetaEdit+

1.1 SYSTEM STRUCTURE

The P&I Diagram specifies pipe connections among the various devices: pieces of equipment

and instrumentation. The behavior of each controllable device can be specified in a

subdiagram using another domain-specific language.

Figure 1-2. Structure: Pipes and Instrumentation

1.2 CONTROL BEHAVIOR

The Heating application language specifies the control logic of the system: the states of the

controller, conditions based on instrument data and various actions to control the instruments.

The instruments are the same as in the P&I Diagram and they can be accessed from both types

of diagrams.

 DSM for heating systems

Heating system example 7

Figure 1-3. Behavior of boiler controller

1.3 GENERATORS

Generators are available for both languages. The most important generators are those for the

P&I Diagram:

¶ óexpFilesô produces the code in the format of TwinCAT .exp files. The generated code

provides the control logic blocks, its simulation and additional resources like

datatypes and task structures. The generated code follows the same style and

conventions as the reference implementation.

¶ óTwinCATô provides integration with TwinCAT PLC control tool: the code, as

produced by óexpFilesô is imported into TwinCAT PLC control tool, migrated with

the platform providing the basic building blocks and compiled for

execution/simulation.

¶ óInstallationô produces a hardware installation guide in HTML listing the type of

instruments and the amount of pipe needed (calculated from the length of individual

pipes).

¶ óDocô generates documentation of the system as a Word document.

In addition to these generators other generators are defined for model checking (shown at the

bottom of Diagram Editor), generating interface descriptions, and producing a textual

description of the piping for those who prefer text instead of diagrams.

Implementing the DSM language for the heating system domain

8 MetaEdit+

2 Implementing the DSM language for
the heating system domain

This section describes how domain-specific modeling languages and generators are

implemented in MetaEdit+.

2.1 DEFINING LANGUAGE ELEMENTS

The abstract syntax and rules of the modeling language can be defined in MetaEdit+ with a

graphical metamodeling language or with form-based metamodeling tools. The concrete

syntax is defined with a WYSIWYG vector graphics Symbol Editor. The semantics is defined

as translational semantics with generators. We outline here those tools used to define the

languages for heating systems. For a complete description of these tools, see MetaEdit+

Workbench Userôs Guide
2
.

2.1.1 Graphical metamodeling

Language elements, the abstract syntax part of the language, can be defined with a graphical

modeling language. The figure below shows the partial metamodel of a language used to

specify control behavior of a central heating system: a state transition diagram language

definition for Heating applications. A blue rounded rectangle symbol indicates an object type

or a set of object types, an orange diamond symbol shows a relationship type and a green

circle is used to describe the role types.

2
 MetaEdit+ Workbench Guide, http://www.metacase.com/support/55/manuals/

http://www.metacase.com/support/55/manuals/

 Implementing the DSM language for the heating system domain

Heating system example 9

Figure 2-1. Metamodel of heating application language (partial)

After the above metamodel is drawn in the Diagram Editor of MetaEdit+, it can be instantiated

and tested immediately with the modeling editors providing full editor functionality

(copy/paste, undo, replace, trace, print etc.). Once the language definition is complete it can be

given to the developers using MetaEdit+ Modeler.

2.1.2 Form-based metamodeling tools

The form-based metamodeling tools can define the abstract syntax of the language, along with

its rules and constraints. notation and generators for model checking, code generation,

documentation generation etc. The form-based tools are integrated with the other tools in

MetaEdit+, allowing the metamodeler to access and trace between all the language elements:

e.g. from abstract syntax to notational symbols, from generator definition to metamodel, from

debugged generator to models etc.

Most importantly, the definition of language elements is automatically applied in the various

modeling editors (Diagram, Matrix, Table), browsers (Graph, Object, Type) and generators.

This supports agile and incremental language definition: updates to the modeling language can

be tested immediately and shown to the language users.

Implementing the DSM language for the heating system domain

10 MetaEdit+

Language concepts (abstract syntax)

The Graph Tool defines the

individual languages. Here a

definition for a óP&I Diagramô is

given. A diagram itself has

properties, and each property has

a more detailed definition. For

example, each P&I Diagram has

a óSystem nameô, which is its

identifying property (marked

with ó*ô). It is of data type String

and its value must be unique:

there canôt be other P&I

Diagrams with the same name.

The Graph Tool also includes

also a description field to

document the language. The

description given is used in the

language help available in the

modeling editors (Help | Graph

Typeé).

The Types tab in the Graph Tool

shows the individual language

concepts: object types,

relationship types and role types.

These different kinds of concepts

can be added or removed here

from the language.

 Implementing the DSM language for the heating system domain

Heating system example 11

For each type, a form-

based metamodeling

tool shows its

definition. Here an

Object Tool shows the

definition of óSensorô,

an object type. The

metamodeler has

specified the typeôs

Name, Ancestor type,

Project, four different

property types, and a

Description.

The property dialog

for entering values for

instances of the type

is automatically

created based on the

properties defined; it

can also be manually

laid out if desired.

Other kind of types, like property types, port types, role types and relationship types are

defined similarly with the form-based metamodeling tools.

In the Properties list for

Sensor (above), we see that a

Sensor has a property, whose

Local name is óNameô, and

whose Property type name is

óSensor nameô. The definition

of the óSensor nameô property

type is shown here in a

Property Tool. It is of String

data type, uses a normal Input

Field for entry, does not have

any default value and must

have a mandatory value. The

constraint on mandatory value

is specified using the regular

expression (ó.+ô).

Implementing the DSM language for the heating system domain

12 MetaEdit+

The Subgraph tab in the

Graph Tool sets which

types of element in this

type of graph can have a

subgraph, and of what

type. The subgraph may be

of a different type from the

parent graph, as in the case

of heating systems, for

example: a Boiler in a P&I

Diagram can have its

behavior described in an

explosion subgraph of type

óHeating applicationô.

Constraints are specified with the form-based tools as a part of the metamodel: the basic legal

structure of relationships is specified on the Bindings tab, and extra constraints can be

specified on the Constraints tab. More complicated rules or those that should be checked only

on demand can be specified with generators. Below some constraints are shown for the P&I

Diagram. The constraints are given as data and entered by choosing from the existing set of

constraint types. For example, each óSystem endô may have only one óPipeô relationship

connected to it.

Figure 2-2. Defining constraints of the language

 Implementing the DSM language for the heating system domain

Heating system example 13

2.1.3 Notation

The graphical notation of the DSL is defined with the Symbol Editor. It can be opened from

the form-based tools while defining the languageôs abstract syntax. Below, a Symbol Editor

shows the symbol for the óBoilerô Object type.

Figure 2-3. Symbol definition for the Boiler

A symbol consists of multiple symbol elements, and each symbol element can be drawn here

as a vector graphic element like a rectangle, ellipse or freeform polygon, or as an imported

bitmap. The symbol of óBoilerô consists of two ellipses, a polyline, and a text label showing

the value of the Name property of the Boiler. The symbol definition also shows three red

connectables, each with a crosshair for relationshipsô role lines to aim at, and a thin red outline

at which the incoming line stops. óBoilerô has a connectable for óPipeô connections for cold

water coming in at the bottom, and another for hot water going out at the top. The third

connectable in the middle is the default, used to draw connections for instruments controlling

the boiler (or for a separate flow, e.g. hot water to taps rather than central heating radiators).

Existing symbols or partial symbols can be imported from MetaEdit+ôs Symbol Library, or

from SVG vector graphics files. Individual symbol elements can be made conditional

depending on the model data, and textual symbol elements can obtain their contents from

fixed text, property values, or the results of generators. A template element can be used to

make parts of the symbol repeat or to include subsymbols based on other elements in the

model.

The icon used for a given language concept in lists, buttons and menus is automatically

produced by scaling down the conceptôs symbol. It can also be overridden by the metamodeler

by drawing a bespoke icon for that concept in the Symbol Editor.

Implementing the DSM language for the heating system domain

14 MetaEdit+

2.1.4 Generators

The MetaEdit+ Generator System is used to define generators for a variety of needs. In the

case of heating systems, generators are used to produce code, model checks, a hardware

installation guide in HTML, Word documentation of the system, and to send the generated

code directly into the TwinCat environment.

MERL, a domain-specific language for generator development, is used to define generators.

The figure below shows a Generator Editor for P&I Diagrams, with the MERL definition for

function block generation. The generator script is shown in the bottom half of the window, a

hierarchy of generators at the top left, MERL templates in the top center, and the concepts of

the language (the metamodel) at the top right.

Figure 2-4. Generator definition in MERL

The Generator Editor supports syntax highlighting, static code analysis, error detection,

navigation among subgenerators, and content assistance for showing the metamodel concepts

and inserting their names in the generator. MetaEdit+ also provides a full MERL source-level

debugger with breakpoints, interrupts, conditional breakpoints, live editing of variables etc. In

addition to the Generator System, MetaEdit+ offers an API based on web services/.Net/SOAP

for accessing the model elements using other systems.

As well as being available for running via menu operations, generators can also be added to

the action toolbar of model editors, and a custom icon can be defined for them in the Symbol

Editor. Generators can also be used for individual language concepts, to control how they are

displayed in lists and texts, e.g. by combining a First Name property, a space, and a Last

Name property.

 Implementing the DSM language for the heating system domain

Heating system example 15

2.2 DEFINING A P&I NETWORK OF THE HEATING SYSTEM

At any point of time during the language definition, the partially-created language can be tried

out in MetaEdit+ using the built-in editors, browsers, multi-user support, printing functions

etc. This enables fast prototyping and incremental development of the DSM support.

The diagram below follows closely the visualization proposed in the LWC2012 assignment.

For example, pipes which are marked to be thermally insulated are shown with thick lines,

pipes which are jacketed are shown with double lines, and pipes which do not have any cover

are shown with thin solid lines. This visualization was defined with the Symbol Editor.

Figure 2-5. Instruments and their pipe connections

The Diagram Editor shows the description of the LWC2012 heating system using the DSL.

The second toolbar row shows the main concepts of the DSL. Models elements are created by

clicking the domain concept on the toolbar and then clicking in the diagram to add it. During

model creation and editing the Diagram Editor checks that the DSL definition is followed:

both by checking the definition of the metamodel and by running the checking scripts written

in MERL.

Implementing the DSM language for the heating system domain

16 MetaEdit+

2.3 IMPROVED VISUALIZATION OF THE P&I NETWORK

The notation shown above follows the well-known and widely-used notation of Piping and

Instrumentation, but we can also enhance it with improved coloring and error annotation. The

figure below shows the same heating application using these visualization enhancements.

These visualization options can be set on or off from the graphôs property óUse visualizationô.

Figure 2-6. Visualizing instruments in the P&I Diagram

The editor also shows possible errors and incompleteness information as defined by the

language engineer. Here two errors/warnings are reported: the FS1 Sensor needs a second pipe

connection, and the MV3 Valve also needs one or more extra pipe connections. Double-

clicking the elements in the error report selects the corresponding element in the diagram,

allowing you to update it easily.

While the P&I network is shown here graphically, it can also be presented textually for those

who prefer textual specifications. Textual specifications can be generated (Graph |

Generatorsé) from the diagram and the properties of the individual pipes and instruments

can be accessed for editing from the text.

 Implementing the DSM language for the heating system domain

Heating system example 17

2.4 CONTROL BEHAVIOR OF THE HEATING SYSTEM

Behavior is defined with another graph type: óHeating applicationô. The behavior description

is defined for each relevant instrument of the P&I Diagram. The Diagram Editor below shows

the behavior of the óPumpô P1. The language is based on a state machine, but is domain-

specific in that it only offers access to conditions supported by each instrument (like óBoilerôsô

flame detection), and to the actions available for each instrument (like turning a óPumpô on or

off).

Figure 2-7. Behavior of pump controller

The behavior model refers directly to the instruments defined in the P&I Diagram. In other

words, a given instrument is the same in both kinds of diagrams ï no need to update a name in

multiple places or keep other values in sync. The Diagram Editor (as well as other editors and

browsers) allows you to trace between these two kinds of diagrams as well as see how

instruments are (re)used. By selecting Infoé from the elementôs pop-up menu you can see the

places it is used. The languages also support consistency checking across the different

diagrams. For example, if a behavior model uses instruments that are not defined in the

structural piping and instrumentation model they are reported as errors/warnings in the P&I

Diagram.

For more complex conditions and comparisons the language has its own constructs, available

from the toolbar like all other language constructs. Below, a diagram for Heat Controller

shows a constraint based on óRadiatorô R1 and óBoilerô B1 warming. This example also shows

entry and exit actions. While they are not necessary, as the same functionality could be

specified via state transitions too, they were added to the heating application language to

mirror the reference implementation more closely.

Implementing the DSM language for the heating system domain

18 MetaEdit+

Figure 2-8. Behavior of heating controller

2.5 SPECIFYING INTERLOCK/CONSTRAINT DEFINITIONS OF

THE CENTRAL HEATING SYSTEM

Usually the best place to define invariants is in the definition of a modeling language itself or

in the generator. This way the language user always follows the constraints ð even without

knowing about them. Therefore the interlock/constraint definition can be supported as in

Section 2.1, defining language elements.

If there is a need to model the interlocks/constraints explicitly and per system, then one

solution would be to add a new DSL with concepts for interlock. That DSL would still be

integrated with the other DSLs. An example of an invariant is that if the burner is on then the

pump must be running. Below such a rule is defined along with an emergency shutdown

action: if the pump is not on and the burner is running then the burner is turned off. Other

constraints could be added to the language too, but here the already available DSL constructs

can be used to describe invariants/constraints.

 Implementing the DSM language for the heating system domain

Heating system example 19

Figure 2-9. Modeling invariant/interlocks with the DSL

2.6 GENERATING STRUCTURAL DEFINITIONS AND STUBS

FOR A TARGET

Structural definitions include for example the data types of component types as well as various

controller states. These are generated as a part of the whole code generation process available

from the toolbar of the P&I Diagram. A sample of the generated data type code for a radiator

controller is shown below.

TYPE E_MDL_RadiatorController_SM_States :

(* RadiatorController states generated from MetaEdit+ *)

(

 (**** Initial States ****)

 MDL_RadiatorController_SM_Initial,

 (**** Normal States ****)

 MDL_RadiatorController_SM_INITIALIZING,

 MDL_RadiatorController_SM_MONITOR_ROOM_TEMPERATURE

);

END_TYPE

In addition to the code, other structural definitions are generated too. The figure below shows

the generated installation guide, which lists all the instruments needed and also calculates how

much pipe is needed.

Implementing the DSM language for the heating system domain

20 MetaEdit+

Figure 2-10. Generated installation documentation

