
 1

ECSA 2023

Juha-Pekka Tolvanen, Steven Kelly
https://metacase.com/papers/ECSA_2023_tutorial.pdf

Domain-Specific Modeling
for Architecture-Centric
Software Engineering

 2

About me: Juha-Pekka Tolvanen

◼ Works for MetaCase

– Provider of modeling and code generation tool MetaEdit+

◼ Acts as a consultant for creating DSLs

– 100+ DSL solutions

◼ Co-author of a book on
Domain-Specific Modeling, IEEE-Wiley

◼ PhD in computer science,
adjunct professor

◼ Enjoys sailing and skiing

 3

Route today

1 Introduction
Languages and architecture, domain-specific languages

2 Cases and examples
Industrial experience reports, Detailed demonstration

3 Elements of language
Abstract syntax, concrete syntax, semantics, metamodels

4 How to create a modeling language
How to start, language definition steps, exercise

5 Generators/transformations
How to, different approaches, examples, integration

6 Summary and discussion

 4

Your questions, comments,
counter arguments and

experiences are welcome

 5 5

Languages and software architecture

• Languages to specify architectures, ADLs

• Architecture in the language

Domain-specific modeling languages

1 Introduction

 6

Languages and architecture

 7

ADLs and a bit of background

◼ Various languages to design, analyze, document, simulate,
integrate with other languages are proposed*

◼ No common understanding what should be presented,
especially in behavior side from architecture

– Various needs and requirements

◼ Different levels of formality

– Informal, semi-formal, formal

◼ Different representation styles

– Matrix, diagram, text, hybrid

◼ ADLs have typically fixed metamodel/grammar/structure

– In this tutorial we can fully change them, or create new

* Ozkaya, M. The analysis of architectural languages for the needs of practitioners. Softw Pract Exper. 2018

 8

Common: Components & connections

Others: +ports, +nesting, type system?

 9

Example, HW function architecture
(EAST-ADL in automotive)

 10

AUTOSAR
(automotive software architecture)

 11

Narrow focus enables wanted usage

◼ EAST-ADL targeting automotive
EE systems

– Generate Simulink

– Check with UPPAAL, SPIN

– Support for functional safety
Assist failure mode and effect
analysis (FTA/FMEA)

– Generate AUTOSAR (arxaml)

– Trace with requirements

– Integrate various views/designs

• safety, security, variability,
dependability

 12

Some narrow, domain-specific ADLs

◼ Applied in the industry, developed by consortiums:

– EAST-ADL

– AUTOSAR

– AADL

◼ Company-specific

– Koala at Philips

– Network architectures at Ericsson

– Telecom system architecture at Nokia

– Embedded software at Honeywell

– Printer Data Path Architectures at Océ/Canon

– Architecture definition at NASA

 13

Some examples

 14

Architecture Language

Language

Architecture

ADL

Language
following

architecture

 15 15

ADLs

Architecture in the language

2 Cases and examples

 16

EAST-ADL, AUTOSAR,…

◼ Running demonstrations

 17

Running example: watches

◼ Models: His, Hers, Sport, Kid, Traveler, Diver…

◼ Reusable component applications

– Time, Alarm, Timer, WorldTime, StopWatch…

◼ Product contains:

– Buttons

– Icons

– Time units

– Alarms

– Sound

– Applications

– Application behavior

 18

Demo on watch products

 19

Fish farms systems

◼ Complete system: HW, SW, Deployment

◼ hardware: sensors, actuators, cabling

◼ functionality: lights, feeding, etc.

◼ UI

◼ persistent data, database

◼ communication network

◼ material needs

◼ deployment and installation

 20

Fish farm automation system

 21

Industry experiences on
productivity increase with DSM

"5-fold productivity increase
when compared to standard
development methods"

"750% increase in developer
productivity, and greatly
improved code quality"

"The quality is clearly better,
simply because the modeling
language rules out errors"

 22

 23

 24https://archive.org/details/mythicalmanmonth00fred/page/94

 25

Investment and ROI

◼ Investment
0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

Cost

Repetition

Current DSM/DSL

{

Existing language

Customize language

Own language

 26 26

Abstract syntax, concrete syntax, semantics

Metamodeling

Tool support for language definition

3 Elements of language

 27

Language

◼ Language =
abstract syntax + concrete syntax + semantics

◼ Abstract syntax

– defined via a metamodel

◼ Concrete syntax

– notational symbols

◼ Semantics

– typically defined via transformations
and generators to other languages

"Prototype"

 28

Model

WinController

Sr1

Metamodel

ComponentPrototype
Sender/
Receiver

InstanceOf

4 levels

Metametamodel

Object RoleRelationshipPropertyGraph

System in operation
MotorDriver in

my car

InstanceOf

MotorDriver

InstanceOf

 29

Metamodel example - overview
◼ + Details:

– Properties

– Constraints

• Uniqueness

• Mandatory

• Naming
conventions

• Connections

– Views/
sublanguages

– Reuse

 30

Language

◼ Language =
abstract syntax + concrete syntax + semantics

◼ Abstract syntax

– defined via a metamodel

◼ Concrete syntax

– notational symbols

◼ Semantics

– C, Java, C# generators

"Display"

 31

Example: Watch-Specific Language, 1

Metamodel

Model

Celestra product

 32

Watch-Specific Language, 2

 33

1 metamodel,
many models

 34

Example of a large metamodel

 35

Feature model example

Metamodel Model

 36

Metamodel

Object/Class

Relationship/
Connection

Property/
Attribute

Role/
Association end

Port

Graph/Language

 37

Tooling to support your languages

◼ 6 ways to get the tools we need for DSM
1. Write own modeling tool from scratch

2. Write own modeling tool based on frameworks

3. Metamodel, generate modeling tool skeleton, add code

4. Metamodel, generate full modeling tool over a framework

5. Metamodel, output configuration for generic modeling tool

6. Integrated modeling and metamodeling environment

◼ Good tools minimize resource use (few man-weeks)
– creating modeling tools and generators data-like, not code

– guide in language definition

– allow testing the language etc.

 38

Various metamodeling tools

 39

Some metatools

◼ Research
– ConceptBase

– (Web)GME

◼ Commercial
– MetaEdit+

– Microsoft DSL tools

◼ Open source
– Eclipse (various frameworks and specific tools)

• EMF, GEF, GMF, Sirius etc.

– MPS

◼ See Erdweg et al. State of the Art in Language Workbenches
for details: https://hal.inria.fr/hal-00923386

https://hal.inria.fr/hal-00923386

 40

Features of tools

◼ Erdweg et al.

◼ + collaboration, evolution, versioning, scalability etc.

 41

Key functions for a metatool, 1

1. Definition of metamodels
– specify the concepts, rules, and symbols of individual

modeling techniques as well as their interconnection rules.

2. Create/provide modeling tools
– different kinds of editors, toolbars, dialogs, help, etc.

3. Repository/storage format
– to store the models based on the new language

4. Maintenance and evolution support
– change metamodels and models

– modify tool support

 42

Key functions for a metatool, 2

5. Definition for model transformations/generators

– definition of various model analyses, checking, code
generation and model documentation reports

6. Metamodel management

– Similar to model management

• browsers, documentation tools, libraries for metamodels,
backups, versioning, configuration management and access
rights for language specifications or for their parts

 43

Key functions for a metatool, 3

7. Management of language updates

– Transformation rules between language versions

• e.g. v1.5 to v2.0

– Update designs (semi-)automatically to correspond to the
new language version

8. Interchange format

– Importing and exporting of both models and metamodels

• safety, avoid tool locking

– Importing should be incremental:

• previously imported data from the same exporter should be
updated automatically, rather than creating duplicates

 44 44

How to identify language concepts and rules

Defining language via metamodels

Defining notations

Language creation exercise

4 How to create a modeling
language

 45

Language definition steps

1. Identify abstractions

– Concepts and how they work together

2. Specify the metamodel

– Language concepts and their rules

3. Create the notation

– Representation of models

4. Define the generators

– Various outputs and analysis of the models

◼ The process is iterative: try solution with examples

– Define part of language, model with it, define more...

Most relevant step

 46

How to find language concepts?

Platform

Component
Framework

Domain
Framework

Generated

Code

Model

Platform

Component
Framework

Hand-
Written

Code

Platform

Component
Framework

Generated
&

Hand-

Written
Code

Wizard

Libraries,
APIs etc.

 47

Approaches to identify DSL concepts

◼ “How do I start creating language?”

– Hard problem for beginners

– Analyzed 23 cases to find good toolbox of approaches

◼ Initial analysis suggested five approaches:

1. Domain expert’s or developer’s concepts

2. Generation output

3. Physical structure

4. Look and feel of the system built

5. Variability space

 48

Problem domain Solution domain/ generation target Approach

Telecom services Configuration scripts 1

Insurance products J2EE 1

Business processes Rule engine language 1

Industrial automation 3 GL 1, (2)

Platform installation XML 1, (2)

Medical device configuration XML 1, (2)

Machine control 3 GL 1, 2

Call processing CPL 2, (1)

Geographic Information System 3 GL, propriety rule language, data structures 2

SIM card profiles Configuration scripts and parameters 2

Phone switch services CPL, Voice XML, 3 GL 2, (4)

eCommerce marketplaces J2EE, XML 2, (4)

Automation network C 3, 4

Crane operations C/C++ 3, (5)

SIM card applications 3 GL 4

Applications in microcontroller 8-bit assembler 4

Household appliance features 3 GL 4

Smartphone UI applications Scripting language 4

ERP configuration 3 GL 4, 5

ERP configuration 3 GL 4, 5

Handheld device applications 3 GL 4, 5

Phone UI applications C 5, (4)

Phone UI applications C++ 5, (4)

 49

1. (Some) domain concepts exists

◼ A good start, but needs revision as often differs from
metamodel/grammar

– Lack details

– Few constraints only

– No consideration of reuse

– No concrete syntax

◼ Refine with examples

– legal

– illegal

 50

<subaction id="Call redirected to the voicemail address">
<location url="sip:jones@voicemail.example.com">

<redirect />
</location>

</subaction>
<incoming>

<location url="sip:jones@phone.example.com">
<proxy timeout="8">

<failure>
<log name="Failed calls">

<mail url="sip:jones@email.example.com">
</mail>

</log>
</failure>
<noanswer>

<address-switch field="origin">
<address is = "sip:boss@example.com">

<location url="tel:+19175551212">
<proxy/>

</location>
</address>
<otherwise>

<sub ref="Call redirected to the voicemail address"
</otherwise>

</address-switch>
</noanswer>
<busy>

<sub ref="Call redirected to the voicemail address"
</busy>

</proxy>
</location>

</incoming>

2. Generation output

◼ Low abstraction (≠problem domain)

– No domain concepts

– No domain rules

– Notation?

◼ Danger: Little
productivity gains

case EditMinutes:
switch (button)
{

case Mode:
state = EditHours;
break;

case Up:
roll(alarmTime, MINUTE, 1, displayTime());
break;

case Set:
setAlarm("AlarmClock", 1, AlarmRang, alarmTime - clockTime);
icon (1, "alarm");
state = Show;
break;

case Down:
roll(alarmTime, MINUTE, -1, displayTime());
break;

default:
break;

}

 51

3. Physical structure as a base

◼ Great as mimic higher level of abstractions

– Do not cover constraints

– Enable creating different examples

– Easier for external language engineers

– Suggest a notation

 52

One DSL per domain?

 53

4. Look and feel of end system

◼ High level of abstraction

– Domain concepts visible

– Notation can mimic
the “real world”

– Finalize by applying all UI
concepts in examples

◼ Often state machine as a basis

– Extend with data & control flow

 54

4. Look and feel of end system

 55

5. Variability space

◼ Domain Engineering

– Language concepts capture variability space

◼ Modeler makes variant choices

– Composition, relationships, values

◼ Infinite variability space (Czarnecki)

– Not just feature tree: unbounded product family

◼ Static variance easy,
dynamic harder

◼ Predict future variability
→ high level of abstraction

 56

Task 1

◼ We need to support different button pressing policies -
- other than single button press

◼ Q: How would you change the language?

 57

Back to our watch product line

1. Understand the domain (conduct domain analysis)

2. Identify variation

3. Map domain concepts
and variation to DSL

 58

Two integrated languages: Structure
and Applications

◼ Structure

 59

Two integrated languages: Structure
and Applications

◼ Applications and behavior

 60

Concepts Symbols

GeneratorsRules
1 2 3 4

1. Enter
concepts &

their properties

3. Draw or
import the
symbols

4. Specify
generators2. Pick rules

from templates

 61

Language implementation

 62

About following domain rules in a
language

 63

Rules [1/2]

◼ Language definition can cover the rules of the domain

◼ Complete and correct models are relevant for product
derivation (code generation)

◼ Putting the domain rules into the language allows

– preventing creation of illegal models

– informing about missing data

– keeping models consistent

◼ Prefer having rules as part of metamodel to having
separate checker

– Support early error prevention and provide guidance

– But going overboard can hinder flow of modeler

 64

Rules [2/2]

◼ How rules are visible for modelers

– During modeling action

– Inform when illegal design is made

– In a separate model check window

– By highlighting element(s) with errors
or missing data

◼ When to run a separate model checking

– Whenever wanted

– After certain model editing actions

– Before code generation

– Show in produced review documentation

– Before versioning etc.

 65

Concrete syntax:
Guidelines for defining notation [1/2]

◼ Vital for acceptance and usability

◼ Symbols can vary from boxes to photorealism
– Best to resemble closely the actual domain representation

– Worst is having everything a box and special text to show the
difference (cf. stereotypes)

◼ Don’t create notation from scratch
– Use known/existing elements

– Apply full range of visual variables

◼ Hint: ask users to define the notation
– It is much easier to introduce their own language than something

you created alone

– Remember also model readers: customers, managers etc.

 66

«Person» «Laptop»

«Output» «Input»

pictogram > geometric > photo

 67

Guidelines for defining notation
[2/2]

◼ Borrow directly from corporate documentation standards

◼ Use eye candy conservatively

– Shadows and fountain fills pretty on screen, poor otherwise

– Clarity in use more important than coolness in first
impressions

◼ Notation can also show other than pure design:

– Different views, levels of detail

– Show errors and warnings, e.g. missing data, default value
not used etc.

– Provide guidance, e.g. indicate if submodel, reused etc.

– Give feedback from running/debug apps, animate

 68

Several concrete syntaxes

 69

On reusing models and model
elements

◼ Typically start by creating one specification

– Normal for the first product, easy to grasp, version etc.

– Most typical approach (Tolvanen & Kelly SPLC 2019)

◼ Later created models may contain parts already defined

– People want to reuse existing specification models

• For fixing bugs once only, for speeding development etc.

– Language extended to include support for reuse, e.g.

1. Has linking to existing reusable models or model elements

2. Adds configuration data on how elements are reused

3. Has core specifications which can be extended and
customized in a predefined way

 70 70

Different generator approaches

How to define generators

Examples

Exercise

5 Generators

 71

Generators (M2T, M2Code)

◼ Generator translates the computational model into a
required output
1. crawls through the models

 → navigation according to metamodel

2. extract required information
 → access data in models

3. translates it as the code
 → translation semantics and rules

4. using some output format
 → possibility to define output format

 72

Model navigation and translation

◼ Multiple ways to navigate
– Using some start elements

– Based on certain types
• Object types

• Relationship types

• Objects with certain connections

• Objects with certain submodels, etc.

– Based on certain instance values

◼ Different computational
implementations possible
– Sequential, Function calls,

Switch-case structure, Transition tables etc.

 73

Implementing domain-specific
generators

◼ All code can never be generated so it is essential to
decide what to generate (and what not)

◼ What to generate is conditioned by
– Applied modeling language (i.e. metamodel)

• Concepts, rules, semantics

– Required code size and performance

– Chosen implementation platform
• Programming language, components, OS, HW

◼ Generator should operate directly with domain concepts
– Shift abstraction

– Rules of the metamodel can guarantee that input
(=model) to code generator is correct

– Generator definition (and maintenance) becomes easier

 74

Let’s see some generators
executed…

◼ 8-bit assembler for microcontroller (flow)

◼ PLC code for automation system (state machine)

◼ 3 GL (C, C#, Java) (state machine)

 75

A task

 76

How to design a generator, 1

◼ Make generator for your situation only
• Trying to make general purpose generator often fails

◼ Make generation process complete, target 100% output
– Never modify the generated code

• want to change assembler after compiling?

– Correct the generator or common framework instead
• no round-trip-related problems

◼ Use modeling languages to raise abstraction
• Don’t model code, model variation

◼ Put domain rules up-front to the language
• Generator definition becomes easier when the input is correct

• Models should be impossible to draw wrongly for generation
(unlike having constraints or code attached to model elements)

 77

How to design a generator, 2

◼ Try to generate as little code as possible
– Glue code only, rest in common part (framework/platform)

◼ Keep generator as simple as possible
– Raise variation to the specification language

– Push low-level common implementation issues to the
framework

◼ Keep generator modular to reflect changes, e.g.
– structure generator based on modeling concepts

– generator per file or section in a file

– use common generator subroutines

◼ Make generated code readable (“good looking”)
– To be used later while debugging the code, executing it in a

simulator, and while implementing the generator

 78

Combining generated code and
other code

– call existing code, instantiate data structures

– be called from existing code

– be subclassed from existing code

– form base classes

– be part of the class (partial class in C#)

– fill templates in existing code

– include protected regions for manual code

Non-generated

Generated code

Model

 79

Other-than-code generators

◼ Checking completeness and uniformity

◼ Configuration

◼ Testing and analysis

◼ Automated build → automating compile and execution

◼ Installation and deployment

◼ Help text

◼ User guides

◼ Documentation and review

 80

Cost of DSL creation: industry cases

0 2 4 6 8 10 12 14 16

Blood separator
(Djukic et al. 2014)

Warehouse automation
(Preschern et al. 2014)

Heating remote control
(Puolitaival 2011)

Terminal network testing
(Puolitaival et al. 2011)

Heart rate monitors
(Kärnä et al. 2009)

Touch screen UI applications
(Safa 2007)

Days

Domain

 81

6 Summary and discussions

◼ Languages that narrow the domain can raise the level of
abstraction

– Domain = narrow area of interest, a problem domain

– DSM/DSL is typically tightly related to the architecture

◼ DSM/DSLs are applied in practice

– A proven way for automating development

◼ Build your languages and generators incrementally

– Provide immediately results to benefit the organization

◼ A variety of tools available

– Development effort 1-3 weeks

◼ Building automation is great fun for experts

 82

Thank you

Questions?

Comments?

Counter arguments?

Experiences?

For further details: jpt@metacase.com

 83

References
◼ Kelly, S., Tolvanen, J.-P., Domain-Specific Modeling:

Enabling Full Code Generation, Wiley, 2008. DSMbook.com

◼ Moody, D., The “Physics” of Notations: Towards a Scientific Basis for
Constructing Visual Notations in Software Engineering, IEEE Transactions on
software engineering, Vol. 35, 5, 2009

◼ Ozkaya, M. The analysis of architectural languages for the needs of
practitioners. Softw Pract Exper. 2018;

◼ Sprinkle et al. (eds) IEEE Software, July/Aug, 2009, including: Kelly & Pohjonen,
Worst Practices for DSM, tinyurl.com/worstDSM

◼ Tolvanen, J.-P., Kelly, S., Effort Used to Create Domain-Specific Modeling
Languages. ACM/IEEE 21st International Conference on Model Driven
Engineering Languages and Systems, ACM, 2018.

◼ Tolvanen, J.-P., Kelly, S., How Domain-Specific Modeling Languages Address
Variability in Product Line Development: Investigation of 23 Cases, 23rd SPLC,
ACM, 2019

◼ Tolvanen, J.-P., Kelly, S., Model-Driven Development Challenges and Solutions,
Int. Conf. on Model-Driven Engineering and Software, 2016

http://dsmbook.com/
http://tinyurl.com/worstDSM

	Slide 1
	Slide 2: About me: Juha-Pekka Tolvanen
	Slide 3: Route today
	Slide 4
	Slide 5: 1 Introduction
	Slide 6: Languages and architecture
	Slide 7: ADLs and a bit of background
	Slide 8: Common: Components & connections Others: +ports, +nesting, type system?
	Slide 9: Example, HW function architecture (EAST-ADL in automotive)
	Slide 10: AUTOSAR (automotive software architecture)
	Slide 11: Narrow focus enables wanted usage
	Slide 12: Some narrow, domain-specific ADLs
	Slide 13: Some examples
	Slide 14: Architecture Language
	Slide 15: 2 Cases and examples
	Slide 16: EAST-ADL, AUTOSAR,…
	Slide 17: Running example: watches
	Slide 18: Demo on watch products
	Slide 19: Fish farms systems
	Slide 20: Fish farm automation system
	Slide 21: Industry experiences on productivity increase with DSM
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Investment and ROI
	Slide 26: 3 Elements of language
	Slide 27: Language
	Slide 28: 4 levels
	Slide 29: Metamodel example - overview
	Slide 30: Language
	Slide 31: Example: Watch-Specific Language, 1
	Slide 32: Watch-Specific Language, 2
	Slide 33: 1 metamodel, many models
	Slide 34: Example of a large metamodel
	Slide 35: Feature model example
	Slide 36: Metamodel
	Slide 37: Tooling to support your languages
	Slide 38: Various metamodeling tools
	Slide 39: Some metatools
	Slide 40: Features of tools
	Slide 41: Key functions for a metatool, 1
	Slide 42: Key functions for a metatool, 2
	Slide 43: Key functions for a metatool, 3
	Slide 44: 4 How to create a modeling language
	Slide 45: Language definition steps
	Slide 46: How to find language concepts?
	Slide 47: Approaches to identify DSL concepts
	Slide 48
	Slide 49: 1. (Some) domain concepts exists
	Slide 50: 2. Generation output
	Slide 51: 3. Physical structure as a base
	Slide 52: One DSL per domain?
	Slide 53: 4. Look and feel of end system
	Slide 54: 4. Look and feel of end system
	Slide 55: 5. Variability space
	Slide 56: Task 1
	Slide 57: Back to our watch product line
	Slide 58: Two integrated languages: Structure and Applications
	Slide 59: Two integrated languages: Structure and Applications
	Slide 60
	Slide 61: Language implementation
	Slide 62: About following domain rules in a language
	Slide 63: Rules [1/2]
	Slide 64: Rules [2/2]
	Slide 65: Concrete syntax: Guidelines for defining notation [1/2]
	Slide 66: pictogram > geometric > photo
	Slide 67: Guidelines for defining notation [2/2]
	Slide 68: Several concrete syntaxes
	Slide 69: On reusing models and model elements
	Slide 70: 5 Generators
	Slide 71: Generators (M2T, M2Code)
	Slide 72: Model navigation and translation
	Slide 73: Implementing domain-specific generators
	Slide 74: Let’s see some generators executed…
	Slide 75: A task
	Slide 76: How to design a generator, 1
	Slide 77: How to design a generator, 2
	Slide 78: Combining generated code and other code
	Slide 79: Other-than-code generators
	Slide 80: Cost of DSL creation: industry cases
	Slide 81: 6 Summary and discussions
	Slide 82: Thank you
	Slide 83: References

