. MetaEdit +

MetaEdit+ Workbench: Define modeling languages and generators

MetaEdit+ Workbench allows you to build your
own modeling tool — without having to write a
single line of code. MetaEdit+ provides a simple
yet powerful tool suite for designing your
modeling language:

Step 1: Define the language concepts and rules
graphically or use form-based metamodeling
tools.

Step 2: Draw the notation with Symbol Editor or
import your existing graphical elements.

Step 3: Make generators to produce required
code, configuration, analysis, testing data,
configuration, etc.

Having defined a modeling language — or even a
partial prototype — you and your team can start
to use it in MetaEdit+. The metamodel can be
changed on the fly and existing models updated
automatically to the new language version.

This is why MetaEdit+ is your best choice
for creating your own modeling tool:

e Support for several integrated languages

e Graphical and form-based metamodeling: no
programming needed

¢ Integrated metamodeling and modeling
(use your language while you define it)

¢ Models update automatically yet non-
destructively when a metamodel changes

e Multiple concurrent metamodelers

e A repository to handle various metamodels

e WYSIWYG Symbol Editor for defining
representations for metamodel elements

e SVG and bitmap importing for symbols

¢ Code generation using templates, visitor
pattern, crawlers and multiple streams

e Generate any language and output format

e Code generator debugger

e Generators and metamodels integrated

¢ Metamodel import and export in XML

e Large metamodel library available

" A MetaCase

Step 1: Define metamodel

Graph Edit View Types Format Help
B 4Dh[DC # D SOE|x omw
= p ¢
4 7 Object set [GOPRR] E

State [Watch] Stop [“Start [Watch] (1] <) =
4 Object [GOPRR] Objects in binding: W

i State Watch], Stop

ction - y |vatem

Button y 4

Start [Watch] M

State [Watch] £

\ , ‘ x 4 ‘
Tréansion Acton) | Acton | con Trénslon (Event) [o mamer sting
- 04 01 g 041
ST
Property | Value
Graphtype Metamodel [€
Graph narr WatchApplica
Properties| Name [Watch State [Watch])
Constraint, Alarm=object State name: String (unique per graph}. \
Description A WatchAppli To |—{Time unit Overridable List i From
Documentaton: Text

<@g [| Kl D
Active: None Subgraph(s): None ‘Grid:lﬂ @10 Snap [Show ”}9 100% v B

Step 2: Draw notation

 Symbol Editor - State [Watch
Symbol Edit View Align Help
H4DBDe HIDLAOB TOON2D L mfi@$
[Rectangle
T Text A
T Text
T
\ Line
\ L
\ Line
\ Line
ate name
Property Value =
XY 34,68 AN oo A
Exent 2415 z B DR o - - - - - - |
Condition Blinking =~ " o l o D | F
Text Blinking = o N |Sp ay n‘
Font #sans serif ===
Font style Regular
Font size 16
Font color [] L4
Underline off
Strikethrough | Off o o
(i) » @ v
Color Fill style: [~| Weight: [ar -
[etmien [Grid:10 @10 Snap @] show | 2 400z~ B

Step 3: Make generators

b Generator Editor for Watd
Generator Edit View Breakpoint Format Help
DdB# 0K (D¢ (%% HE (Ex (588 1 UA
[Hierarchical ~||Graph id
4 |Build || Object type
4 Autobuild Port metatype
> _Watch translators Role project
_read INI file = || Relationship oid
> matches for: _prebuild for * | Templates projectid
> Language Framework objectid
4 _Models ~ || control newline
4 matches for: _"Model External /0 la7l
_Cs WatchModel Strings & Numb:
3 Java WaichModel | Representations
[Report '_Java WatchModel') =

variable 'souzceFile' write do Sgemeratedpackage { id sep } id '.java' close
if not $souzceFiles =~ SsourceFiletwildsp them
variable 'scurceFiles' append $sourceFile ' ' close

filename $srcPath SsourceFile write g
subreport '_Java_Applet' run
close

do :Display;
{
variable 'scurceFile' write do Sgeneratedpackage { id sep } 'Display’ id
*.java' close
if not $sourceFiles =~ SsourceFilebwildsp then
variable 'scurceFiles' append §scurceFile ' ' close
filename $srcPath SsourceFile write
subreport '_Java_Display' run
close
endif

Ylistonmaentie 31, FI-40500 Jyvaskyla, Finland
Phone +358 400 648 606, Fax +358 420 648 606
info@metacase.com, www.metacase.com

. MetaEdit +

MetaEdit + Modeler: Make models, generate code and documentation

MetaEdit+ Modeler follows the given modeling
language definition and automatically provides
the full modeling tool functionality: diagramming
editors, browsers, generators, trace and
refactoring tools, multi-user support, etc.

It integrates with your existing application
development environment: reading in
configuration data, referencing component
libraries, simulating models and integrating in
your build process.

MetaEdit+ as a multi-user tool. MetaEdit+ can
run either as a single-user tool, or simultaneously
on many clients connected by a network to a
server.

This is why MetaEdit+ is your best choice
for a modeling and code generation tool:

e Diagram, Matrix and Table Editors

e Multi-user support: share and reuse models
and model elements

e Eclipse and Visual Studio integration

e Straight model-to-code transformations:
no need for intermediate formats

e “Live code”: click generated code to see
original model element

e Code generation from multiple models

¢ Model animation and simulation support

e Re-generation support with protected blocks

e Metrics and model checking

e Model import and export in XML

e HTML and RTF document generators

e |ntegration with version control systems

e Automated trace of modeling history and
changes

e SOAP/.NET/Web services API

e Scalable up to 4 billion design objects in one
project

e Maintenance, support services and help desk

¢ Training and consulting services

© 1991-2016 MetaCase. All rights reserved.

Diagram Editor

watch, 4. September 2012, 13:2(

Graph Edit View Types Format Help

Bal+spm(9c (4 D|POHEX
Qo-em®==|$|a0& ¢ 7

Alarm B *
4 Button EZRsECET = E

Moae sysTime

o
» = DisplayFn running -
b g [] startTime

stopwatch
2 @ Start [Watch]
Start [Watch]
4 [State [Watch]
Running sysTime

I

4 (8 Stop [Watch] -

startTime —=

Property | Value
Object typ| State [Watch]
State name_Stopped
DisplayFn

Blinking

Document In this state the

<3 » < [ing]

Active: Stopped: State [Watch] Subgraphis): None Grid: 10 @ 10

Snap [C] Show H}E) 100% ~ @

Matrix Editor
= WatchApplication: TASTW, February 1. 2013, 1118

Repository Edit Browsers Metamodel Help

SR [&E D

ELICT T iR R =1

Graph Edit View Types Auis Cell Format Analysis Help
B8+ RH|DC(4+0|lpl DEE EB|X|
O==-eO®= AT A
BA\armC\uck Elstopwatch :ITI!DE :Iﬂmer :IWor\dTlme
[] AlarmClock | 2 > =
:Istopwatch ’ ’ ‘;
ETime » | 4]
:l'ﬁmer ’ ’
:\WorldTlms ’ " =
< n] +
Browsers

Projects
Digital Watch

% Graph Browser | 0B Type Browser | By Object Browser | B3

Metamodel Browser |

Graphs
|[E5 Watch Models: WatchFamily
{57 Simple: WatchApplication
> {5 TAST: WatchApplication
4 [TASTW: WatchApplication
5 AlarmClock: WatchApplication
[=]stopwatch: WatchApplication)
£ Time: WatchApplication
[E5 Timer WatchApplication
£ WorldTime: WatchApplication
> {5 TST: WatchApplication

Contents: Objects

= DisplayFn -

[#] Action

[#] Action

EActlon

(! Down: Button

= Mode: Button

(I Running: State [Watch] =

= running: DisplayFn

@ Start [Watch]

— startTime: Variable

(®) Stop [Watch]

= stopTime: Variable in
stopwatch: Ican

sysTime: VariableRef -
— Filter: | ** Filter: | *:*
Digital Watch__ ~| Tree: [Allsubgraphs =[] show: [opjects -

MetaEdit+ is a registered trademark of MetaCase. The other trademarked and registered trademarked names are the property of their respective owner companies.

