. MetaEdit +

MetaEdit+ Workbench: Define modeling languages and generators

MetaEdit+ Workbench allows you to build your
own modeling tool — without having to write a
single line of code. MetaEdit+ provides a simple
yet powerful tool suite for designing your
modeling language:

Step 1: Define the language concepts and rules
graphically or use form-based metamodeling
tools.

Step 2: Draw the notation with Symbol Editor or
import your existing graphical elements.

Step 3: Make generators to produce required
code, configuration, analysis, testing data,
configuration, etc.

Having defined a modeling language — or even a
partial prototype — you and your team can start
to use it in MetaEdit+. The metamodel can be
changed on the fly and existing models updated
automatically to the new language version.

This is why MetaEdit+ is your best choice
for creating your own modeling tool:

e Support for several integrated languages

e Graphical and form-based metamodeling: no
programming needed

¢ Integrated metamodeling and modeling
(use your language while you define it)

¢ Models update automatically yet non-
destructively when a metamodel changes

e Multiple concurrent metamodelers

e A repository to handle various metamodels

e WYSIWYG Symbol Editor for defining
representations for metamodel elements

e SVG and bitmap importing for symbols

¢ Code generation using templates, visitor
pattern, crawlers and multiple streams

e Generate any language and output format

e Code generator debugger

e Generators and metamodels integrated

¢ Metamodel import and export in XML

e Large metamodel library available
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Step 1: Define metamodel
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Step 2: Draw notation
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Step 3: Make generators
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MetaEdit + Modeler: Make models, generate code and documentation

MetaEdit+ Modeler follows the given modeling
language definition and automatically provides
the full modeling tool functionality: diagramming
editors, browsers, generators, trace and
refactoring tools, multi-user support, etc.

It integrates with your existing application
development environment: reading in
configuration data, referencing component
libraries, simulating models and integrating in
your build process.

MetaEdit+ as a multi-user tool. MetaEdit+ can
run either as a single-user tool, or simultaneously
on many clients connected by a network to a
server.

This is why MetaEdit+ is your best choice
for a modeling and code generation tool:

e Diagram, Matrix and Table Editors

e Multi-user support: share and reuse models
and model elements

e Eclipse and Visual Studio integration

e Straight model-to-code transformations:
no need for intermediate formats

e “Live code”: click generated code to see
original model element

e Code generation from multiple models

¢ Model animation and simulation support

e Re-generation support with protected blocks

e Metrics and model checking

e Model import and export in XML

e HTML and RTF document generators

e |ntegration with version control systems

e Automated trace of modeling history and
changes

e SOAP/.NET/Web services API

e Scalable up to 4 billion design objects in one
project

e Maintenance, support services and help desk

¢ Training and consulting services
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