

 WHITE PAPER

IMPORTING FILES WITH
METAEDIT+ GENERATORS

MetaCase
Ylistönmäentie 31

FI–40500 Jyväskylä, Finland

Phone +358 400 648 606

E-mail: info@metacase.com

WWW: http://www.metacase.com

© 2022 MetaCase 1

IMPORTING FILES WITH
METAEDIT+ GENERATORS

Abstract

This paper describes how MetaEdit+ generator system can be used to

reverse engineer existing data from files into models. While MetaEdit+

Reporting Language (MERL) is made for defining generators it also

provides functionality for reverse engineering.

1 DOMAIN-SPECIFIC MODELING

Domain-Specific Modeling (DSM) raises the level of abstraction beyond programming

by specifying the solution directly using domain concepts. Rather than creating all

models by applying the modelling language, it can be sometimes feasible to import part

of those models from external sources. These could be requirements, parameters,

interface definitions or other library elements used in modelling.

For importing MetaEdit+ provides an XML format and a programmatic API, but the

generator system’s MERL language can also be used to parse and import data from

external files. MERL is made for generating (turning models into text) rather than for

parsing and importing (turning text into models). For complex textual input languages a

proper parser would work better, but MERL works fine on simpler formats like CSV

files or consistently formatted text or code. In this paper we describe how code stored in

files can be imported into MetaEdit+ as models.

2 METAEDIT+ MERL FOR IMPORTING

MERL, the MetaEdit+ Reporting Language, provides functionalities to read external

files, perform simple parsing on them, and output XML model files to be imported into

MetaEdit+. The full MERL language is described in the Workbench User’s Guide, and

here we describe the main steps via an example. The steps are:

• Choosing files to be imported

• Parsing them to select data to be imported

• Creating MXM file(s) including the imported data

• Reading the MXM file into MetaEdit+

2 © 2022 MetaCase

3 PHASES OF IMPORTING

To avoid learning a particular domain and input format we use a wider known example:

Importing Java classes to UML Class Diagrams. You can find the same example from

the demo repository’s UML project. Open a Generator Editor for Class Diagrams and

see the generator called ‘Reverse engineer Java’ for details. You may also use it by

running it on some example Java files.

3.1 Choosing files to be imported

Selecting files to be imported can be done either by:

1) Setting a certain location and then reading all files from this location (variable

‘dd’). This is detailed for Windows platform in a subgenerator ‘_Reverse

engineer Java dir’ available in the demo repository.

/* By default, reverse engineer the default reports directory */
variable 'dd' write
 subreport '_default directory' run
close

2) Explicitly asking for the file to be imported with the askFilename command.

/* Ask file to be imported */
local 'importedFile' write
 prompt 'Choose file to be imported' askFilename
close

/* Read file into a variable called ‘file’ */
variable 'file' write
 filename @importedFile encoding 'UTF-8' read
close

In the case of selecting a single file, other files can also be read based on the data given

in the imported file(s), e.g. by recognizing include statements in the file and parsing

those files too.

Before reading the files, it is also good to specify housekeeping like what to do if they

are not available or which encoding to use when reading them.

3.2 Parsing files to select data to be imported

MERL-based parsing generally works by analyzing files per line. If the imported file

follows a comma separated format or similar, then reading it into variables is

straightforward with a translator. Several useful predefined translators can be found

from the ‘_translators’ generator, which is defined for ‘Graph’ itself and thus can be

applied in all modeling languages (graph types) in MetaEdit+. You can also define your

© 2022 MetaCase 3

own translators for more specific parsing. Below, an example translator to translate

semicolons into newlines is defined (note the \ escape before the newline) and applied.

/* translates semicolon into newline */
to '%semColToNewline
; \
'
endto

@i = '1' /* local variable name, initial value ‘1’ */
do id%semColToNewline {
 local @i++ write id close
}

If the file follows another format, then MERL parser code needs to take account of that

format. In the case of parsing Java, the format via sample content is shown below:

// Stores one of the top scores and the player who achieved it.
public class TopScore {
 public String playerName; // Name of the player.
 public int score;
}

Listing 1. Sample Java code to be imported

The example below shows MERL parser to identify values for attributes from a Java

class. Line 01 translates the white spaces and = signs in the line into newlines, giving us

a token per line, and these are then individually analyzed. If the line is a comment that is

recognized (line 02) and the rest of that line is not analyzed further (line 03).

01 do id%spacesAndEquals
02 { if id =~ '//*' then $comment++%null endif
03 if (id and not $comment) then
04 if id =/ '(public|protected|private|static|final|transient|volatile)' then
05 if id =/ '(public|private|protected)' then
06 $evisibility=id
07 endif
08 if id='static' then $escope='class' endif
09 if id='final' then $eaccess='readonly' endif
10 else
11 $token++%null
12 /* Sets the attribute type as type variable */
13 if $token='1' then
14 $type = id
15 endif
16 /* Sets the attribute name as element variable */
17 if $token='2' then
18 $element = id%strip
19 subreport '_c_element' run
21 endif
22 endif
23 endif
24 }
25 $comment=''

4 © 2022 MetaCase

At line 04 a keyword from the regular expression is recognized, and then line 05 finds

the visibility and stores it to a variable in line 06. In a similar way, variables are used to

store scope (line 08) and access (line 09) if these have been set in that line of Java.

If the line did not include any of the expected keywords, then $token, which stores the

phase of class parsing, is incremented (line 11). If $token is 1 (line 13), we have the

datatype of the attribute and this value is stored to variable $type (line 14). If $token is

2, we have an attribute name which is stored to variable $element (line 18). Once the

attribute name is found a sub-generator ‘_c_element’ is called.

The full code for parsing the class can be found from the generator called ‘_class’ in the

demo repository.

3.3 Creating MXM file(s) including the imported data

The sub-generator ‘_c_element’ outputs the values we saved in MERL variables in the

previous parsing step, into the MetaEdit+ XML format for Models (MXM). This format

is detailed in the Workbench User’s Guide.

A good practice to identify the names and format that the created MXM file should

follow is to create an equivalent model manually in MetaEdit+ (see figure below) and

then export it as an MXM file. This file then serves as a reference and test case for

creating MXM during import.

Figure 1. Reference example in MetaEdit+ (see listing 1)

How the ‘_c_element’ generator outputs a UML Attribute to the MXM file as a model

object is shown below. The Attribute definition starts in line 02 and ends in line 38. Its

content is the five property values that were extracted and saved to variables during the

previous parsing phase. Each property value follows the same structure: the slot

definition defines the property’s name followed by its details. Here each property

consists of a single string value. The name and data type of the Attribute are always

written to the MXM, but the others are only written if a value for them was saved to the

respective variable during parsing. (When omitted, that property will take the default

value defined for it in the modeling language.)

© 2022 MetaCase 5

01 Report '_c_element'
02 '<object type="Attribute [UML]">
03 <slot name="Name">
04 <value>
05 <string>' $element%xml '</string>
06 </value>
07 </slot>
08 <slot name="Data type">
09 <value>
10 <string>' $type%xml '</string>
11 </value>
12 </slot>
13 '
14 if $evisibility then
15 ' <slot name="Visibility">
16 <value>
17 <string>' $evisibility '</string>
18 </value>
19 </slot>
20 '
21 endif
22 if $escope then
23 ' <slot name="Scope">
24 <value>
25 <string>' $escope '</string>
26 </value>
27 </slot>
28 '
29 endif
30 if $eaccess then
31 ' <slot name="Access">
32 <value>
33 <string>' $eaccess '</string>
34 </value>
35 </slot>
36 '
37 endif
38 '</object>
39 '
40 endreport

By default, a generator outputs its result to an output stream inside MetaEdit+, but for

importing it must be stored to an external file in MXM format. This can be done by

creating files and storing the content to there. Line 01 sets the file name and encoding

then opens the file for writing. Lines 02, 03 and 05 are boilerplate, and line 04 calls the

main generator that parses the input files and outputs the result in MXM format.

01 filename @importedFile '.mxm' encoding 'UTF-8' write
02 '<?xml version="1.0" encoding="UTF-8"?>' newline
03 '<gxl xmlns="http://www.metacase.com/gxlGOPRR">' newline
04 _Import_file()
05 '</gxl>'
06 close

6 © 2022 MetaCase

3.4 Reading the MXM file into MetaEdit+

The final phase of the import is to read the resulting MXM file(s) into MetaEdit+. For

this purpose, MetaEdit+ offers the fileInPatch: command, and this is called from

MERL with an internal…execute command. The result is that the models in the

MXM file are created in MetaEdit+.

internal 'fileInPatch: "' @importedFile '.mxm"' execute

4 CONCLUDING REMARKS

Models can be imported into MetaEdit+ from various sources. We described here the

approach of using MERL to import models from textual files. In the Java case the

imported model included only the conceptual data, but the MXM file can also include

representation information like size or location of the visual diagram elements. If these

can be identified from the imported files or created otherwise during import, the layout

information can be included in the import. If not, opening the imported data creates a

default representation, and the auto-layout commands in MetaEdit+ can be used.

If you plan to implement your own import with MERL, please see the MetaEdit+

MERL and XML sections in the Workbench User’s Guide at:

https://metacase.com/support/55/manuals/. The Java import case used here can be found

from the demo repository and its UML project. Open a Generator Editor for Class

Diagrams and see the generator called ‘Reverse engineer Java’.

