
11

CHAPTER 1

INTRODUCTION TO THE RESEARCH

12

1 Introduction

The last thirty years have seen a rapid growth in the use and importance of
information systems in society, coupled with a growing discontent of the
failures and problems experienced with these systems. Before half-way through
this time period, it was already widely recognised that we were facing a
‘software crisis’ (Bro82), whose effect could be likened to that of an epidemic
whose symptoms appear only slowly: the situation was already bad when it
was recognised, it was getting worse, and there was no cure in sight. The
central observed problem was a massive backlog of projects that had fallen
behind schedule, and systems that were of low quality and suitability, with
virtually no documentation.

The search for a solution was focused in three directions: analysis of the
whole process and concepts involved in building information systems (e.g.
Che76, Bro82), application of more rigour in the early stages of projects by
following explicit methods (e.g. Gan79), and the documentation of the
development of systems, often using computers (an idea going back as far as
the early seventies (Bub71)). The branch of methods grew with astonishing
rapidity, largely subsuming the other two branches, and producing huge
numbers of methods of increasing complexity. Aside from leaving practitioners
stranded in a ‘methodology jungle’ (Avi88), and for a long while forcing
academics to limit their research to classifying the methods (Oll82), rather than
examining how they performed in practice, the growth of methods easily
outstripped that of the computer tools that were built to help implement them.

The very early, text-based Computer-Aided Software Engineering (CASE)
tools such as PDL (Cai75), PSL/PSA (Tei77), SEM (Tei80) and SREM (Alf77) had
allowed changes to the method supported, which gave users some possibility to
maintain tool support in the face of the rapidly changing methods. However,
newer methods and tools had adopted graphical representations and interfaces.
Whilst these were substantially easier to use, they were more complicated to
specify, and thus CASE tools were no longer able to provide the user with
facilities for changing the method they supported. The CASE tools, heavily
outnumbered by methods, were thus forcing the users to adopt their built-in
method, rather than supporting the methods from which the organisation was
already starting to see benefits. Conversely, the organisation could continue
with its own method, substantially weakened by the lack of computer support,
or even build its own CASE tool, a heavy investment in a venture in which it
had no experience, and could only make financially feasible by making the
result available commercially.

These conflicts, of course, did nothing to improve the image or practical
benefit of the expected CASE revolution (You86). CASE had been unrealistically
trumpeted to be the ‘silver bullet’ that would solve all information systems
development (ISD) problems. All too often, the response to the failure of CASE
to provide such a solution was to blame the method or the tool. This of course
led to the development of yet more methods or tools: hardly likely to improve
the situation. The software crisis meanwhile continued, and no other cure was

13

on offer, so all projects of any size and complexity were still either looking to
using CASE, taking it into use, or licking their wounds after an unsuccessful
experience. Only a few were realising anything like the ‘full’ benefits, and their
situation was by no means the most common: they were:

• strategy-oriented and aware (Sil90),

• had a well-defined method already in use (Par90), and

• this method was supported by an available CASE tool (Aae92b, Kus93).

A similar mixture is recognised by Le Quesne (LeQ88, LeQ90), and whilst
McClure (McC89) lists 15 mostly tool-centred problems, he too recognises that
organisational factors are as important as these. Not even all the organisations
fulfilling these conditions successfully adopted CASE: as many researchers
point out, the successful adoption of CASE is “dependent on a complicated mix
of organisational and technological conditions” (Aae92a).

Taking these conditions, however, we can see that ensuring the
satisfaction of the first two is outside the scope of research into CASE tools, and
our aim must therefore be to help those organisations which fulfil these by
providing a CASE tool which will support their method. As has been stated, it
is a practical impossibility to build a new CASE tool for every method, and
there is no suggestion that everyone will begin to use the same method, or even
one of a small set of methods (Bub92). Certainly attempts to consolidate a group
of methods, as the Unified Modelling Language (Boo97) does for object-
oriented methods, are worthwhile. They do not, however, signal the end of
method development, but rather the maturing of one cycle. There will certainly
be further versions of the UML, and we would expect to see a new paradigm of
methods rising up to take the place of object-oriented methods, just as these
replaced structured methods (You86). New methods of course require new
tools, and it is ironic to note that the UML has caused perhaps the largest ever
upsurge in releases of CASE tools.

As we have observed, building a whole CASE tool from scratch is a large
and complicated project, significantly too slow to keep pace with method
development. The solution to this conundrum thus lies in a CASE tool which
can be customised to support any method. Two possible approaches to this are
perceivable: a CASE tool could be designed and built modularly, so that the
minimum coding effort is required to change the part concerned with a
particular method; or a CASE tool could have its method as data, rather than as
code, and functionality could be provided for altering this method data, in the
same way as was done in the early text-based tools.

The former solution is the one largely adopted by industry, but is flawed
from the users’ point of view: only the vendor can make the changes, and the
cost of such changes is high. Whilst the reduction in work to make a CASE tool
for a new method is significant (one manufacturer claims reuse as high as 90%
(Rus94)), the rate of such adaptation has still proved insufficient to satisfy users’
needs. Furthermore, the cycle from requesting a change to the method support
to using the modified tool is painfully long, and the customer is left highly
dependent on the vendor.

14

The latter solution, called CASE shells (Bub88) or metaCASE tools (Ald91),
has produced promising research prototypes and a few somewhat limited
commercial products. These have not yet been widely taken into use, although
the use of Systematica’s Virtual Software Factory metaCASE tool (Poc91) by
IBM in building its BSDM support tool (Hai92), and again by Heym and Österle
in the construction of their MEET method engineering environment (Hey93b),
provides practical proof that such tools can be useful. Comparisons of these
metaCASE tools (e.g. Mar93, Gol93), have revealed that the process of
metamodelling (Tei80, Bri90) — configuring the tools to support a method —
could be improved, as could the coverage of the support for the method in the
configured tool.

The research in this thesis aims towards metaCASE tools which would
better answer the needs and criticisms of CASE tool users, in these two
particular ways:

• the process, concepts, and tools for metamodelling should be improved;

• the metaCASE tool should be capable of being more easily and accurately
configured and tested for a wider range of interlinked, evolving methods.

Work towards these goals will improve the existing success of metaCASE in
remedying observed CASE problems, which in turn will improve the whole ISD
process, bringing corresponding benefits in the information systems which are
playing an increasing part in our society. In particular, the first goal will speed
and ease the process of improving the methods we use to develop ISs, and the
second goal will allow better implementation and support of these methods in
CASE tools.

In the next section we will look at the background and terminology of this
field, thus briefly presenting the conceptual framework within which the
research takes place. In Section 3 we examine the current situation of the field,
its problems and some of the proposed solutions. These motivate and provide
our research problem, discussed in Section 4. The methodology with which the
research is carried out is justified and presented in Section 5, along with its
application in this thesis. A short summary of each paper is presented in Section
6, followed by a brief overall conclusion and directions for future research.

2 Background

2.1 Terminology

The terminology in this field is in a sorry state, with homonyms and synonyms
causing confusion and endangering communication among researchers, and
between research and practice. It is to be hoped that the work of groups such as
FRISCO (Lin90) will help produce de facto standards for the terms to be used
and their meanings: in the mean time, we are forced to explicitly define the

15

terms used in this thesis and their meanings, before we go any further. Only the
barest justification is given for most of these definitions, although it is hoped
that they form a clear and mutually consistent and supportive set. Further
information about the later topics is to be found in the rest of this introduction,
especially Section 2.4.

ISD: Information systems development

Judging from the acronym, one would be justified in assuming that ISD
represented only the development phase of systems engineering, and need
not necessarily be systematic. The term ISD has, however, accumulated a
rather more advanced meaning. We will follow this trend, and define ISD
after the fashion of Welke (Wel83) and Lyytinen (Lyy87b):

Information systems development is a change process taken with respect to an
object system in an environment by a development group using tools and an
organised collection of methods to produce a target system.

The use of ‘system’ in object and target systems is to be taken in the most
general sense: we may be writing code, designing a database, modelling a
method etc.

Software / systems engineering

Nunamaker et al. (Nun91) list several definitions of software engineering.
For our purposes the definition of (IEE83), short and to the point, will
suffice:

Software engineering is the systematic approach to the development, operation,
maintenance, and retirement of software.

Systems engineering is a superset of software engineering that also
includes, inter alia, engineering of businesses’ information structures.

(ISD) method

A method is a way of carrying out ISD. Whilst also applicable to
unformalised, subconsciously applied ways of working, the term is more
generally used to describe a formulated process and set of intermediate
representations and rules for progressing in the course of ISD. The term
‘methodology’ has caused some confusion, with one school of thought
following etymology and Maynard (May39) to have it mean ‘the study of
methods’ (e.g. Har94), and another school using it for ‘a body of
interlinked methods’ (e.g. Kum92, Oll82, Oll86). Similarly, there are
differing opinions as to what constitutes a method: one kind of diagram
and instructions for how to build it? a set of interlinked diagrams? any

16

procedure, possibly using many sets of diagrams? Various other
classifications and names have been proposed, including ‘fragment’ and
‘technique’ (e.g. Har93, Har94, Bri90, Slo93), but none of these has yet been
widely accepted. In this thesis, then, we will use ‘method’ to include both
those concerning single and multiple diagram types, specifying more
exactly when we are talking only about a single diagram type or multiple
linked diagram types.

Another source for information about what constitutes a method is
the books which present and describe individual methods. Such a book
often includes three types of information: worldview (a way of thinking
(Wij91)), data model (a way of modelling), and process model (a way of
working). In current CASE tools really only the data model has been
implemented: the rest are largely left up to the user. For this reason the
term ‘method’ in connection with CASE tools, at least in normal usage,
largely refers to the data model part of the method; changing the other
two parts is not seen as changing the method supported by the CASE tool.
The data model part then is also the central part of a method from the
viewpoint of this thesis, concerned as it is with CASE tool support for
methods.

An example of a simple single diagram type method is Data Flow
Diagrams, which together with other linked diagram types forms part of
the wider SSADM method (Gan79). More recently, there have appeared
many object-oriented methods (e.g. Boo91, Rum91), which often include
diagram types borrowed from the older structured methods.

Method engineering

As method engineering is only a specialised kind of ISD (see e.g.
Lyytinen’s (Lyy87a) definition), it can usefully be defined by extension of
the definition of software engineering (IEE83):

Method Engineering is the systematic approach to the development, operation,
maintenance, and retirement of methods.

Until very recently, actual method engineering could hardly have been
said to exist as a discipline, with published research covering only
concepts and principles (e.g. Bri90, Kum92, Hey93b), the role of the
method engineer (Bub88), or studies of how metamodelling takes place in
practice (Tag90). Methods were certainly developed, but the process of
their development was not well defined, and largely haphazard. This has
been one factor leading to the development of the current ill-structured,
over-populated ‘method jungle’ (Avi88). Lately, empowered by a greater
theoretical and practical understanding of methods and their
development, research has started to be published on the process of
method engineering (e.g. Tol93, Tol95). The term ‘method engineering’ is
unfortunately often used when people actually mean ‘metamodelling’.

17

Metamodelling

Metamodelling in general is the modelling of the languages we use to
model with (cf. Bri90). In ISD it is used for the process of making a model
of an ISD method: metamodelling is thus just method modelling. In many
ways, the process of modelling a method is very similar to that of
modelling a system, as has often been recognised (e.g. Har94, Smo91b).
This similarity has motivated reuse of concepts, methods and tools
between the areas, e.g. OPRR (Wel92, Smo91b), ER (Che76), and NIAM
(Nij89) have all been used as data models for both methods and
information systems, and the MetaEdit environment (Smo91a), which uses
OPRR, uses the same graphical tool to manipulate both models of systems
and models of methods.

Whilst most metamodelling is for the purpose of implementing a
method in a metaCASE tool (see below), methods are also modelled to
examine their relationships to each other (e.g. Oei94, Ros94b) or how well
a set of methods would work together (Kin94), or in a given tool (Bri89).

CASE (tool)

Originally standing for Computer-Aided Software Engineering, more
recent recognition that the theories and tools of CASE can be applied to a
wider area of ISD, notably to business systems, has led to the replacement
of ‘Software’ by ‘Systems’ in the acronym. Unless otherwise specified, a
CASE tool is generally thought of as supporting one fixed method.

CASE can be divided depending on the phase of the ISD process, and
one common way is to use ‘upper CASE’ to refer to the upstream parts of
the development such as requirements analysis and design, and ‘lower
CASE’ for the later phases. Integrated CASE or I-CASE includes a well-
linked combination of both upper and lower, and also generally aims
further at support for the extreme ends of the development process: very
early project definition, and programming and maintenance of the
resulting IS. Whilst some tools still claim to support I-CASE, most
manufacturers have taken a step back from this area, realising they cannot
deliver what they promise (Lou92 p.379).

Although CASE as a term is by definition rather broad, including
any computer support for systems engineering, in usage the term has
largely come to mean fixed single method upper CASE tools. We shall
follow this convention in this thesis, without at all underestimating the
value of computer tools in other parts of systems engineering, or the need
for integration of CASE tools with such other tools.

Examples of CASE tools abound: even back in 1988 they numbered
in the hundreds (Bub88). Tahvanainen and Smolander (Tah90) provide a
good selection of references on CASE and CASE tools. Some well-known
examples are Software Through Pictures (Was86), Excelerator (Exc87),
Rational Rose, and Select OMT.

18

MetaCASE (tool)

A metaCASE tool or CASE shell is a CASE tool whose method support can
be changed (the former name (e.g. Ald91) appears to be replacing the
latter (e.g. Bub88), being more accurate and descriptive). A true
metaCASE tool allows the method to be completely changed for a new
one, but many CASE tools are now exhibiting some metaCASE
functionality by allowing additions and minor cosmetic changes to their
existing method support. A metaCASE tool need not include within itself
the functionality for defining the new method: that may be defined
elsewhere and compiled externally into a form that the metaCASE tool can
accept. In such cases we generally talk about a ‘generic CASE component’
and a metamodelling component.

In this thesis, we do not accept as true metaCASE anything which
requires programming of resulting CASE tool operations in a
programming language or something close. This follows from the term
metaCASE itself: as a metalanguage is still a language, even if one level
higher, metaCASE must still be CASE: programming is not generally
recognised as CASE, therefore systems requiring programming should not
be regarded as metaCASE. Whilst we do recognise that such systems too
have their benefits, it becomes impossible to decide how much
programming should be allowed (or else we risk classifying C++ as a
metaCASE tool!), and there are enough metaCASE tools which involve no
programming to show that programming can be eliminated completely.
This rules out systems such as PPP (Gul92) and GOODSTEP (GOO95),
which are better regarded as libraries or frameworks to support CASE and
help add new method support.

We do however allow metamodels to be written in textual
languages, as these do not contain the control structures found in
programming languages. Similarly, we would allow rule and constraint
expression in logic languages or similar, and the possibility of
programming to extend CASE tool behaviour, providing that basic
standard CASE functionality can be achieved without it.

Examples of metaCASE tools are Excelerator’s Customizer (Exc87),
RAMATIC (Ber89), MetaView (Sor88), VSF (Poc91), IPSYS Tool Builder
(Ald91), and Paradigm Plus CDK.

MetaCASE environment

The term ‘metaCASE environment’ (Kel94b) has been used for a system
which supports metamodelling (modelling of methods) in the same
environment as modelling, and itself produces the metamodel and inputs
it to the metaCASE tool. Examples of metaCASE environments include
MetaEdit (Smo91a), KOGGE (Ebe97), and MethodMaker, although all of
these require some degree of user intervention in the transformation of the
modelled method into a functioning metamodel.

19

CAME (tool)

CAME is computer-aided method engineering. CAME thus does not
necessarily involve any metamodelling, or any metaCASE. Early ‘CAME’
tools supported contingency-based selection between several methods
(e.g. HECTOR’s SESAM (Sav90)). More recently it has been possible to
record the various parts or fragments of methods and build new methods
from them (Hid93, Har94) (note this involves some degree of
metamodelling). These tools, if they can truly be called CAME tools, thus
support only a very narrow area of methodology engineering.

CAME environment

A true CAME environment, if the generated methods are to have
computer support, would have to include an integrated metaCASE
environment, in order to check the engineered method in use, and allow
incremental method engineering (Tol93, Tol95, Kel94a, Ros94b). This
would remove the need for user intervention mentioned for the existing
metaCASE environments. Currently none exist by our definitions,
although Decamerone (Har97) is a close research prototype.

Thus the more CAME functionality a metaCASE environment has,
the more it qualifies as a CAME environment. Such CAME functions are
described in e.g. (Mar96), and include support for querying and reusing
types in metamodels, updating models when metamodels change, and
automatic checks and guidance for the metamodeller. Similarly for a
CAME environment to qualify as ‘multi-user’, it should allow multiple
simultaneous modellers and metamodellers.

2.2 Definition of the ISD process

There are many models of the ISD process that largely agree on the basic
definition of ISD which we are using and thus could be used here (e.g. Aur88,
Smo91a, Mar92). These models, however, tend to be complex and unclear in
terms of outward appearance, and, possibly related to this, some blur over
some important conceptual differences in their attempts to be universally
applicable.

A major factor leading to the intimidatingly complex appearance and lack
of clarity of all of these descriptions is their use of only binary relationships.
Information Systems Development is an inherently complex process, involving
multifaceted interactions between several parties, human, technological and
abstract. At each stage it is possible to identify around five parties, and it would
be possible to show a meaningful relationship between any two of these: a little
arithmetic informs us that we could thus draw 20 relationships — and that
assumes that from any one party to another there is a maximum of one
relationship, whereas many authors have several.

20

Whilst each of these relationships could be a fair representation of an
actual relationship or interaction, a multi-part or n-ary relationship probably
better serves our purposes, expressing the basic idea that there is one
interaction or process underway, that involves many parties each acting in a
different role. Thus, while not abstracting away any more detail than do the
other models, we can produce a diagram that is substantially simpler to
understand, and hopefully reveals a truer picture of the underlying process.

The Information Systems Development process is generally at each stage a
move from a less precisely defined model (object system) or concept of a
system to a more precisely defined model (target system). This move is carried
out by a modeller or development group, in and possibly aided by a certain
environment and its tools, and the process and resultant model follow the rules
of a given method language or metamodel. The actual move itself — the
relationship — can be understood as an instantiation of the way of working from
Wijers’ set of terms (Wij91): how the modeller performs this move.

Taking the terms in bold as the central concepts or entities in play, we can
thus represent this as a 5-part relationship in the form of a cross: for
convenience the environment, being the central location of all activity and the
cross-roads through which almost all information passes, is represented directly
over the centre point of the relationship. It is important to understand that the
model contains only one relationship, which involves five objects in different
roles. This relationship and its roles forms a pattern, which can be applied to the
several different kinds of modelling that occur at different levels and stages of
ISD.

Modeller

more defined model

metamodel

less defined model modelling environment

==

 FIGURE 1 Modelling in ISD as a 5-part relationship

Of course, any one of the parties may be complex: we may have many
modellers working together, for instance. Similarly, the parties are to be
understood as situated in their own environment: the modeller within an
organisation, the modelling environment in an operating system with other
tools, and particularly the two models within their own environments. Thus for
instance a modeller draws on not only a specific requirements definition but
also his own and others’ knowledge of the target organisation: the terms in the
diagram denote the central concepts of the parties involved, and are not
intended to form exhaustive descriptions. Thus the application of ‘less defined
model’ and ‘more defined model’ to a situation may result in something that is
not normally called a model: they may be metamodels, mental ideas, program
code etc. The ‘more defined model’ may also include things not found at all in
the less defined model, e.g. an important part of early phases of ISD is the

21

identification of extra aspects of the problem that should be considered.
Basically, though, the move from left to right always represents some kind of
process of increasing formality, precision, definition or information.

Sometimes the assignment of ‘less defined model’ and ‘metamodel’ can be
difficult to determine: the simple rule is that the ‘metamodel’ defines what kind
of resulting models are legal, in general, whereas the ‘less defined model’ is our
measuring stick for judging the accuracy of the resulting model. Similarly, in
many situations the metamodel is a fixed part of the modelling environment,
often inseparable from it. In this thesis, concerned as it is with modelling
environments whose metamodels can change, it is worthwhile making the
distinction.

The second problem with many of these earlier frameworks is the laxity
with which the meaning of the relationships is handled. Many frameworks, for
instance, contain three levels, ‘Metamodel’, ‘model’, and ‘IS’, showing them as
being three points along the same dimension. The situation, however, is not that
simple: the model and IS are both different representations of the same thing,
whereas the metamodel is the language in which the model is written.
Conversely, we could start with acknowledging that metamodel is the language
for the model, but note that the language for the IS is some programming
language, rather than the model. Similarly, other frameworks show
‘metametamodel’, ‘metamodel’ and ‘model’ correctly as being three points
along the same dimension, but incorrectly use the term ‘metametamodel’ for
something other than the language in which metamodels are written. This kind
of laxity in relation to the misuse of the ‘meta-’ prefix is also noticed by
Leppänen (Lep94).

A more accurate model of the interrelationship of metamodel, model and
IS, and their production, would look like Figure 2. Note that the link between
first and second relationships is formed differently than between second and
third: the shared object plays different roles in the second relationship of each
pair. This makes explicit the difference mentioned above which was missed in
many earlier frameworks.

ProgrammerModeller

model

metamodel programming language

ISEnvisaged system
Programming environmentmetaCASE environment

Metamodeller

metametamodel

method CAME environment
==

==

==

 FIGURE 2 Three levels of ISD showing inter-level relationships

We could add further ‘cross’ relationships to show the development of the
method or metametamodel, but these processes tend to be more abstract, less

22

well defined, and as yet poorly understood. Similarly, we could add complexity
by showing that many of the parties evolve over time, but that is not our main
focus of concern here. We could also draw another cross relationship showing
the IS in use, with the resulting IS system functioning as the environment, but
our model is probably not particularly well-suited to that: what would be the
less defined and more defined models there, and is there anything we can
consider as being a metamodel or language, other than some non-discrete part
of the IS itself?

This 5-part relationship model, then, is particularly well-suited to the
stages of modelling methods, and of modelling systems — processes whose
similarities have been recognised before (Bri90), and on which we concentrate
in this thesis.

2.3 Processes and products

Books which present and describe individual methods often includes three
types of information:
• worldview: information about the overall philosophy and background of the

method (way of thinking (Wij91));

• data model: information about the individual concepts of the method
including their representations (product metamodel, way of modelling);

• process model: information about the order of steps in applying the method
(way of working).

Of these, CASE tools only really support the second: the worldview is left up to
the user, as in most cases is the process model. Attempts to support the process
model have largely been confined to rules for low-level operations, which many
would class as part of the data model. Process centred environments in contrast
focus on the process, either at a low level, in which case they also include some
CASE functionality and a data model, or at a high level, in which case they
generally do not include CASE functionality, but rather could call an external
CASE tool. The low-level process support has in practice often been found to be
too restrictive: Verhoef and ter Hofstedte (Hof96) noted that process support for
ordering tasks like ‘creation of an entity’ is not feasible, arguing that it is
inappropriate to restrict the freedom of specialists in their work.

It has often been noted that modelling processes is itself a modelling of a
system, and indeed many mainstream CASE methods include diagram types
for modelling processes, e.g. State Transition Diagrams. Thus we have process
models, languages in which they are expressed (e.g. State Transition Diagrams,
Petri nets), and a higher language in which we define such languages. This
corresponds to the situation with product (data) models, i.e. model, metamodel
and metametamodel. The difference appears when we consider the people and
phases involved: a process model is made based on a method, probably by the
same person who models the data model of that method. The resulting process
model is then used in parallel with the meta (data) model, to guide the modeller
in developing models of the envisaged system.

23

There are thus three stages concerning processes in a metaCASE and
CAME environment, compared with two concerning products (see Figure 2:
note that we omit the last stage there that produces an IS, as this does not take
place in the metaCASE environment). The first two stages (metamodelling and
modelling) are of the same nature in both, and we can prefix them with
‘process’ to make the distinction clear. The additional third stage is new, and
involves the application of the completed process model. These three stages are
shown in Figure 3: the model of ISD described above includes no role for
process guidance, thus we add a thick grey arrow to show it.

Modeller

Process
Modeller

process
model

process
metamodel

metamodel

modelenvisaged
system

method

metaCASE environment

metaCASE environment

Process
Metamodeller

process
metametamodel

process
modelling
method

CAME environment

==

==

==

Process
modelling

Product
modelling

 FIGURE 3 Process model creation and application in a metaCASE environment

The third stage here is thus the second stage from Figure 2. It should be
emphasised that the first two stages here do not take place in parallel with the
first two stages in Figure 2. It would be more natural to suppose that the
process metamodeller defines one or more process metamodels once, and these
are seldom changed. Subsequently for each method to be modelled the (data)
metamodeller and process modeller (possibly the same person) work to
produce a meta (data) model and process model in parallel.

This is of course only one view: it could be simpler, for example if the
process metamodel were fixed in the metaCASE environment. Alternatively it
could be more complicated: it might be possible to make a ‘method-
independent’ process model, a series of steps that is good to carry out
regardless of which method, or rather meta data model, is being used; examples
would be parts of standards such as SEI CMM (Pau93), ISO/IEC 12207 (ISO95)
and IEEE 1074 (IEE95). The grey arrow above would thus include some work
for the process modeller or project leader, in attaching the concepts of the meta
data model to be used into the various steps of the generic process model. In
addition the process model could be modified at that stage, for example
removing a step that does not apply to this project. Thus the process model

24

produced at the end of the second phase above would be used as a template,
which must be integrated with a meta data model and possibly modified before
being used. Such an approach has indeed been followed in MetaEdit+ (Kos97),
but shall not be discussed in this thesis.

An important part of or addition to process models is an agent model:
which people (or other non-human agents, e.g. programs) are involved in
which processes. This is often extended by the concept of a user role: each
person may play a multitude of roles (e.g. project leader, designer), and for
many processes it is more important that someone able to play a given role
performs a process, than that a specific person performs it. It is thus more
sensible and flexible to specify that ‘a designer’ will draw an ER diagram, than
that ‘J. Smith’ will draw it. The current understanding of such agent models is
however not very advanced compared to that of data models, and improving it
falls outside the limits of this thesis.

2.4 Concepts and representations

Whilst we have spoken above largely of the metamodel and model as
containing concepts, they also contain representations for these concepts. A
representation in a model is in general a graphical symbol with labels showing
the values of properties of the given conceptual model component.
Representational information includes facts such as the exact x and y co-
ordinates a particular object has in a diagram, or the width and font used for an
object forming a column in a matrix. In a metamodel, the symbol is specified,
along with information about which property values are displayed where and
how. This distinction between conceptual and representational aspects is
important, and can be considered as a dimension of information in CASE
(Smo91a), orthogonal to the type-instance dimension already covered. As can
be seen, the model presented above works equally well for representational
information: the meta-metamodel is then the language or way of representing
symbols.

An explicit separation of conceptual information from representational
allows us to maintain the same conceptual information, and display it in several
different representations, e.g. as both a diagram and a matrix, or as two
diagrams with different layouts. For instance, a Class Diagram graph could
have two different diagram representations, one stressing the inheritance
hierarchy and the other the aggregation hierarchy: the underlying conceptual
graph would be the same for both. Most of the conceptual objects would then
have representations in both diagrams, whereas the conceptual relationships
would mostly have a representation in only one diagram or the other.

25

3 Current situation and related research

Having set out our terminology and conceptual framework, we now use these
to aid us in examining the state of the art in CASE and its sub-disciplines. In
particular, we are interested in the problem areas that can be identified, for it is
in these directions that our efforts should be concentrated. We look first at the
general state of tool support for CASE, metaCASE and CAME, including
descriptions of an extensive set of existing commercial and research tools, and
then more closely at the results of empirical research on CASE tool use.

3.1 Current tool support

At present, there are hundreds of CASE tools on the market, only a very few
metaCASE tools, and no true CAME environments, excluding research
prototypes. Most of the CASE tools support the use of a fixed method, almost
always graphical, in which representations of the information system can be
drawn as part of the analysis, design and documentation of the system. The
structure of these diagrams and the information contained in them is recorded
in the ‘data dictionary’ or ‘repository’. Textual reports can be produced from
the contents of the repository, and the syntactic correctness of the data there can
be checked on a fairly simplistic level. Some more advanced CASE tools,
especially those intended for the rapidly-growing area of business process
engineering methods (Dav90), include support for other non-graphical
representational paradigms such as matrices or tables, e.g. Anderson
Consulting’s Foundation (Fou87a, Fou87b). We will not consider process
centred environments here, as the majority are prototypes or do not themselves
qualify as CASE tools; Marttiin (Mar97) examines a number of such
environments from the viewpoint of integrating process support with
metaCASE.

Current metaCASE tools separate the metamodelling part from the CASE
part, with the description of the method being written in a textual language,
possibly compiled to some other form, and then fed into the configurable CASE
tool, which then supports the new method. Some more advanced tools provide
partial graphical support for the metamodelling process, e.g. MetaEdit
(Smo91a) and Mark V MethodMaker. In tools of this type the graphical
metamodel is made with the same CASE functionality as the resulting CASE
tool, but using a special ‘metamodelling’ method (whose metamodel has been
bootstrapped from a textual description, and may have special links to CASE
tool functionality reserved only for that method). The resulting metamodel is
first transformed to a textual language, which is then compiled etc. as above.

This separation of metamodelling and modelling has an important
drawback: it is not possible to interactively test the results of metamodelling
immediately, because of the long transform-compile-link-run cycle to move
from metamodelling to modelling. This is a severe hindrance to the
metamodelling process, as if a problem is spotted whilst testing a method, the

26

user must exit his model, restart the metaCASE tool, read in the metamodel,
edit it, transform, compile, and link it to the resulting CASE tool (these steps
often require separate commands, manual text editing and external tools). The
resulting CASE tool can then be restarted, and the existing models must
generally be explicitly updated to use the new metamodel before the change
can be tested.

None of these tools provides real support for method engineering: in
addition to the difficulty of testing described above, they generally have no
support for reuse. Conceptual reuse of method components is difficult or
impossible, and tool support for finding reusable components and reusing them
is non-existent.

There are however some early CAME tools, although the range of the
CAME process these cover is at present severely limited. Most concentrate on
selecting a subset of a single method, rather than integrating among several
methods, or building new methods. Lack of integration with the metaCASE and
resulting CASE tools hampers the incremental nature of method engineering
(Tol93, Kel94a, Tol95).

Much constructive research in metaCASE has failed to make full use of
results from previous research efforts, both commercial and academic. Any
number of projects have implemented a simple single-user metaCASE tool with
very basic functionality, despite the large number of existing research
prototypes and even commercial tools. Where researchers have referred to
existing tools, they have often examined only versions several years old or
weaker tools, despite the availability of more recent information and published
material. In an attempt to rectify this situation, in the rest of this subsection we
will examine a rather large set of metaCASE tools. Even so, exhaustive coverage
of the exact current state of all existing tools is not possible: the field is
constantly progressing, and commercial tool manufacturers in particular are
wary of giving information to researchers, whom many view as potential
competitors. These descriptions thus represent at best a snapshot of available
information.

We roughly divide the tools into full products (released and used, whether
commercial or not) and research prototypes (i.e. never fully released or used).
In addition we list some scientifically interesting tools that are currently
unavailable, and some tools that have been mentioned elsewhere as metaCASE
but which we feel do not qualify. As there currently exist no true metaCASE
environments with good CAME support, we will not look at CAME tools here:
instead, the issues of CAME functionality are covered in the following section.
An exception is made in the case of the Decamerone environment (Har97),
which is included below as an example of those CAME tools that do not fulfil
our criteria for metaCASE.

The tools are examined in alphabetical order: after each tool name we give
the manufacturer or university that developed it: where tools have been
commercialised or changed hands, several names are given in chronological
order. Because many of these tools are not covered in scientific publications,
and trade publications are often several years old, we have included material
from the manufacturer’s own WWW site with footnotes to the URLs, or from

27

other promotional material. Where dates are not given, the information is from
July 1997.

The descriptions are not intended to cover each tool fully, but rather to
help illustrate the various ways in which metaCASE tools work, and how
effective these ways are. The tools thus provide concrete examples of the
general discussion of metaCASE, and an overview of what related research,
both academic and commercial, has achieved. After the tool descriptions, we
summarise the most important tools in a table.

Full products

MetaEdit (now MetaEdit Personal) (Jyväskylä/MetaCase Consulting)

MetaEdit (Smo91a) consists of a generic CASE tool part whose method
support is provided in binary metamodel files. It uses a textual
metamodelling language based on OPRR (Smo91b). It includes graphical
tools for generating this language for both conceptual (using graphical
OPRR) and representational (using a separate symbol editor) parts of
metamodels. These two parts of the metamodel are then joined by hand
into one text file, and this is run through the Moffer metamodel compiler
to generate the binary metamodel file which drives the generic CASE tool
part. If a metamodel is changed, existing models based on it can be
explicitly updated to use the new metamodel. This ease of metamodelling
is the main advantage of MetaEdit: it is the easiest metamodelling tool
described here.

MetaEdit has several limitations, mostly in its CASE functionality.
We describe them here in some detail as they form areas for improvement
in the development of MetaEdit+ covered in this thesis. Models are
limited to a few tens of graphs, all of the same graph type, and there is no
linking between models. This prevents proper implementation of most
methods, where there are several integrated graph types. An odd
implementation of relationship metamodelling requires creating several
near-duplicates of relationship types in some not infrequent cases (Kel95),
also complicating CASE use with extra types. The conceptual-
representational distinction is rather weak: only objects may have more
than one representation, and each model file is conceptually one large
graph, of which subsets are visible in different diagrams, contrary to the
user perception of a model as consisting of several graphs. There is no
support for complex properties, effectively ruling out true modelling of
object-oriented methods, and complex object support is limited to a simple
explosion construct.

Despite these limitations, MetaEdit has proved successful as a
metaCASE and CASE tool, with users numbering in the thousands. It has
also been used as a tool in other research projects, e.g. Jarzabek and Ling

28

(Jar96) found it useful in developing a BPR method with CASE tool
support.

MethodMaker (Mark V)

ObjectMaker is a multi-method CASE tool. Method support for it can be
developed with the Tool Development Kit (TDK, described later) or
MethodMaker. MethodMaker allows the “rapid development of new
method notations” and to “modify and extend existing notations”.
Metamodelling is accomplished by with “with simple diagrams and fill in
forms” by “editing a diagram set”. The “ObjectMaker CASE Tool
functionality is inherited”: however, it is unclear whether this
functionality is inherited into the metamodelling tool (i.e. ObjectMaker
with a special metamodelling method) or the resulting tool (i.e. there is no
need to specify tool behaviour in any kind of code).

Thus it would appear that metamodelling with MethodMaker
follows the same pattern as MetaEdit, described above. Sadly, Mark V
have declined to provide any material or details on their products, citing
‘trade secrets’.

System Architect (Popkin)

Popkin’s System Architect provides only limited metaCASE functionality:
according to their web page1 the user can “Define properties for any
dictionary entry, including definitions, symbols and diagrams. Build links
between various dictionary objects.”. Definition of entirely new methods
appears not to be possible. Again, attempts to obtain further information
have been unsuccessful.

ToolBuilder (Sunderland/IPSYS/Lincoln)

The ToolBuilder metaCASE system was originally reported in (Ald91)
and has since been commercialised. It currently consists of three
components:

• the specification component — used to create the specification of the
tool.

• the generation component — used to transform the specification into
parameters for the generic tool

• the run-time component — the generic CASE tool itself

The first two are contained in the METHS system, and the third is called
DEASEL. DEASEL provides standard CASE functionality and supports
multiple users on a true repository. METHS captures four kinds of
information:

1 http://www.popkin.com/prods/sa/add.htm

29

• the data model upon which data capture and output generation is
based.

• the frame model upon which the views are based

• the diagrammatic notation for each diagram frame

• the textual presentation for each structured text frame

The data model is ER extended with some constraints and the ability to
have attributes whose values are derived from other attributes. It allows
triggers on events applying to attributes and relationships. The frame
model specifies editor behaviour, but DEASEL does supply a default set of
behaviour.

A guidebook to using ToolBuilder exists on the WWW2. METHS
definitions are in the form of textual files in three languages: data
description language (DDL), graphics description language (GDL), and
FDL (presumably frames description language). No information on the
textual presentation language was available. The DDL and GDL appear
not dissimilar to the corresponding parts in MetaEdit’s textual
metamodels, although the syntax seems somewhat harder to follow.

Thus ToolBuilder appears to provide a usable metaCASE system, but
the time required to build support for a method is long:

“Even a completely new method can take only man-months to implement, with
prototypes taking man-weeks. The rapid prototyping nature of ToolBuilder means
that demonstrations can be created in man-days.”

This is probably because of the complicated textual languages, and the
separation of the CASE and metaCASE tools. Also, whilst it is of course a
benefit that DEASEL provides basic default CASE behaviour, one gets the
impression that this may be insufficient for most actual CASE tools,
requiring coding in FDL to specify tool operations.

In comparison with MetaEdit, ToolBuilder seems to provide better
support for large integrated models, and extra possibilities for customising
the behaviour of the resulting CASE tool, but at a high cost in terms of the
time required to develop CASE tools. Also, no information is provided as
to if and how existing models can be updated in any way to reflect
changes in the metamodels, a vital requirement for method engineering.

2 http://osiris.sunderland.ac.uk/rif/bgtbk/wmwork/www/tbk_1.html

30

Research prototypes

ConceptBase (Passau/Aachen)

ConceptBase3 is primarily a multi-user deductive object manager on top of
a Telos database with extensions from deductive and object-oriented
languages. As such a repository it has been used at over 150 educational
institution sites. It is possible to use ConceptBase as a metaCASE tool,
however most usage has been in other areas, with close examples of these
being process modelling, design rationale, and retrieval of reusable
software components. Some implementations of simple single methods
with ConceptBase exist: ERA, a BPR method with four simple object types,
and FUSION.

The conceptual support of ConceptBase is high, but its
representational support appears low: symbols appear to be limited to
displaying a single simple property (the ‘label’ or ‘name’). More seriously,
representation information of CASE diagrams is apparently not stored in
the repository, but rather in separate files: no information is given as to
how the problems this creates are solved in a multi-user environment.
Further, loading such a file only succeeds if all the conceptual objects
present when saving are still present when loading4. A detailed list of
problems encountered with ConceptBase 4.0 — mainly its representational
support — is given in (Hah96), which attempted to provide CASE support
for FUSION with ConceptBase.

Metamodelling in ConceptBase appears to be partly textual and
partly form-based. A drawback is the requirement that one property of
each object, its ‘label’ or ‘name’, must have unique values. Whilst this was
common in older structured methods, it is not necessarily the case in
newer methods.

Whilst the repository is generally the strong side of ConceptBase, it
has two serious drawbacks when considering serious use as a metaCASE
tool: it is required that the whole repository must fit into main memory,
and there is currently “only primitive provisions for multi-user support”.

However, whilst these problems are serious, and render
ConceptBase at best only a research prototype for metaCASE, it must be
remembered that ConceptBase is not attempting to be specifically a
metaCASE tool. Its strength lies in its deductive temporal repository
which allows it to be used beneficially for a wide range of research, and in
that it excels.

3 http://www-i5.informatik.rwth-aachen.de/CBdoc/cblit.html lists a good selection of

references, many important ones of which are only available as downloadable technical
reports.

4 http://www-i5.informatik.rwth-aachen.de/CBdoc/userManual/ see section on Graph
Browser.

31

KOGGE (Koblenz)

KOGGE (Ebe97) is a metaCASE environment that follows a similar
transform-compile-link paradigm to MetaEdit. The same basic
functionality of the CASE tool is present whether metamodelling or
modelling, but these two functions cannot be carried out simultaneously.
KOGGE uses an extended ER meta-metamodel for the basic concepts of
methods, which are modelled with a graphical editor, and this is extended
by the GRAL language for describing constraints and rules on the
concepts. The operational user interface is described by separate state
charts, also modelled graphically. In addition, users must program part of
the CASE tool functionality in a language similar to Modula-2. Although
there is a library of routines for some often used actions, the need to right
Modula-2 programs as text means that KOGGE does not fully meet the
criteria we laid down for a metaCASE tool.

MetaGen (Paris)

A prototype offering only basic CASE support, MetaGen (Rev95) is
interesting because of its support for transforming a model from one
method to another, via a set of production rules. Methods are modelled in
either a graphical or a textual list-based user interface, and then
transformed to Smalltalk classes. These classes form the metamodels, and
are instantiated when modelling. In addition, rules must be declared in a
separate system, NéOpus, and the task of writing the rule base is a ‘fully-
fledged problem’. When the rule base has been written, the transformation
can be applied to the source metamodel to generate the target metamodel,
as well as later on source models to generate target models: a clever touch.
Basic facilities exist to export and import metamodels as text.

MetaPlex

Although MetaPlex (Che89) had basically textual rather than graphical
CASE support, it is worthy of mention as one of the earliest metaCASE
tools. It used a textual language to define metamodels, which are
interpreted rather than compiled, and even included some rudimentary
CAME functionality by generating help text for method users from the
metamodel.

MetaView (Alberta)

Initially described in (Sor88), the MetaView system has been extended to
include textual metamodelling with extended ER and graphical definition
of symbols. Support as a CASE tool is rather weak, with only a simple
graphical editor which lacks some standard functions. The result is rather
like an early stage in the history of MetaEdit without graphical
metamodelling, indeed a Master’s thesis (Lo95) that produced a partial
prototype symbol editor states that:

32

“We are most interested in MetaEdit’s graphical meta-modeling techniques
because it is the ultimate goal of our research in the Metaview system. Since the
general architecture and the approaches used by MetaEdit are quite similar to
those of our Metaview system we have used the MetaEdit system as a valuable
source of reference during our research.”

Insofar as this represents a willingness to build on existing research
efforts, it is a rare and welcome sign of the use of constructive research to
its full potential. MetaView includes interesting ideas, in particular to do
with transformations between models made with different methods, and
we await the fully working version of those parts with interest.

RAMATIC (SISU)

RAMATIC (Ber89) is a prototype metaCASE tool supporting textual
definition of the conceptual constructs of methods, their symbols, forms
for editing them, and the menu and toolbar structure of tools. Menu items
can be defined to call existing functions, or extra functions can be added
by programming: the most basic CASE functionality is already provided
in the existing set of over 100 functions. An important feature in
RAMATIC is its separation of conceptual information from
representational information. RAMATIC is compared with QuickSpec and
Excelerator in (Mar93).

However, the time to create a CASE tool for even simple methods
such as ER and DFD is of the order of weeks. Partially to address this, an
interface from MetaEdit (Ros92) was built to enable graphical metamodels
to be transformed into the textual language for conceptual constructs used
by RAMATIC. With extensions to include the menus and symbols (not
built), such an approach was estimated to reduce the time to build a CASE
tool by an order of magnitude, from weeks to days.

Unavailable products

The following products are currently not available: manufacturers are
however already advertising their functionality, or a previous version has
been available and withdrawn. Only especially interesting examples of
such products are included here.

Customizer/Excelerator (Index Technology/Intersolv/SELECT)

The current status of this tool is rather uncertain: Customizer was a tool
that allowed Excelerator CASE tool users to change the metamodel used
in their repository. Excelerator II has now been transferred to SELECT
Software Tools, who intend that customers should stop using it and move
from it to their own CASE tool, SELECT Component Factory, which has
no metaCASE features. Attempts to contact the manufacturers have met
with no success.

33

According to an old FAQ5, Customizer offered the following
functionality:

“Can customize and mix parts of one approach with another in a user-friendly
manner. Intersolv LAN repository meta-CASE [tool] with customizable graphics
and rules”

Whilst earlier versions of Customizer used a procedural language for
checking of consistency constraints, later versions used the CLIPS rule-
based language acquired from NASA (Hag95). Prior to this, Customizer
probably could not be classified as a metaCASE tool because of the
programming required, but it had been used by Tagg (Tag90) to
implement support for a small method. The main benefit identified
compared to other methods of building CASE tools was the short time
required to make changes, allowing comparison of different versions or
implementations of the method. Similarly, DMR Group, a systems
integrator based in Montreal, added support for their Productivity+
method using Customizer (Han94). Customizer was compared with
QuickSpec and RAMATIC in (Mar93), which also provides more details of
its metamodelling facilities, albeit before the change to use CLIPS.

GD Method Builder (ASTI)

This was originally advertised on their web page as being available ‘4th
Quarter 1997’, but the date has now been removed. The release date for
the accompanying fixed-method CASE tool, GDPro, has been put back to
‘3rd Quarter 1997’. The sales material on the web advertises an ‘easy to
use GUI’ to define new objects, relationships, attributes and symbols and
code generation for these. As they put it: ‘No more struggling with text
files and complex, abstract description languages. Welcome to the age of
GUI-based meta-CASE’. We await the finished product with interest.

The CASE tool, GDPro, will support ‘collaborative “white board”
development’, allowing users ‘to interact “live” with each other’: an
interesting innovation, although one whose usefulness in practice is
dubious (Mar91). Such an approach was also taken in Nokia’s TDE
(Tai97).

Paradigm Plus (Protosoft/Platinum)

Paradigm Plus is a multi-method CASE tool, whose method support is
developed using the Paradigm Plus CASE Developer’s Kit (CDK). This
CDK has often been advertised as being available for purchase, which
would make Paradigm Plus a metaCASE tool. However, whilst the CDK
has at some points been available and actually sold, at most points it has
not actually been available: this is the case at present. Currently, Paradigm
Plus’s customisability is limited to a high-level script language that

5 http://www.cyberdyne-object-sys.com/oofaq/ comp.object FAQ, v1.0.9, 4/2/96 Appendix D

34

provides access to the data in the repository and some functions of the
tool6. It does not however allow customisation of methods: this is ‘coming
soon’ (Keu97). Sadly, no description of what the CDK is, what it does or
how it works is available.

Earlier user reports seem to have been mostly negative. A project at
the University of Iowa in Spring 19967 gave the following description of
the CDK:

“One major drawback of the current Paradigm Plus system is that it is not easily
extensible to support other methodologies, nor is it easy to update currently-
supported methodologies. Current estimates for such changes provided by
ProtoSoft are: sixteen person-months for a new methodology to be completely
incorporated into Paradigm Plus, and seven person-months for an update to a
currently-supported methodology.”

The project was apparently given requirement specifications by ProtoSoft,
who wanted them to build a form-based GUI (similar to that in
MetaEdit+) for metamodelling with Paradigm Plus. Such a GUI was
implemented by the project, but the resulting ‘Paradigm Plus Plus’ has not
been commercially released, tested or further developed. Our own
experience with form-based GUIs for metamodelling would indicate that
it would noticeably reduce the long times for method development quoted
above.

VSF (Systematica/ISDE Metasoft)

VSF (Poc91) used the set-theoretical and propositional calculus language
CANTOR to define the conceptual data in metamodels and its constraints,
and the Graphical and Design Language GDL to specify graphical
representations. The latter was somewhat complicated: 15 lines of code to
represent a simple DFD Flow arrow. Despite this complexity, VSF was
taken into use to some extent (e.g. as the basis for the MEET environment
(Hey93a, Hey93b)). VSF’s strong point was its ability to define
complicated constraints, although other research (Ves92) suggests that
these are not generally appreciated by users. A clear weakness is the
complicated nature of metamodelling: the time to metamodel a method
would be considerably longer than with today’s leading tools.

Although ISDE Metasoft offers support for existing customers, VSF is
no longer being sold.

6 http://www.platinum.com/clrlake/para_30/features/custom.htm
7 Project members were Pramada Boinepalli, Dave Frank, and Julie Jones. See

http://www.cs.uiowa.edu/~frank/softeng/

35

Non-metaCASE tools

A metaCASE tool, as we see it, is more than just a system which allows the
development of CASE tools: if that were the case, any programming language
would qualify as a metaCASE tool. We thus exclude tools which require
programming (in something like a standard programming language) to specify
basic tool behaviour, although we allow specification of meta-datamodels and
symbol definitions in a textual language, and also some measure of
specification of constraints in some kind of logic language. Basic CASE tool
functionality should be provided by the metaCASE tool, and modified by the
data in the metamodel provided by the metamodeller.

Similarly, resulting CASE tools must be CASE tools, not for example
databases or flowcharters. There is of course some measure of overlap and
fuzziness in these definitions, and not everybody would accept all the criteria,
and it is for this reason that the following are at least briefly described, rather
than left out completely. In addition, by describing tools just outside the
boundary we set for metaCASE, the positioning of that boundary hopefully
becomes clearer to the reader. Where there are several examples of a certain
type of tool, only one has generally been included here. As should be clear, the
inclusion of a tool here is no slight on its usefulness or value: in the right
situation each of them has its use, and research value in its own field.

Decamerone (Twente)

Harmsen et al. (Har93, Har94, Har97) have described a prototype CAME
environment, Decamerone, which assists the method engineer in selecting
among fragments from several methods to assemble a method suitable for
his current contingency. The resulting set of fragments is processed and
can be fed into the Maestro II repository to generate the basic repository
definition for a CASE tool supporting the new method. However, it was
necessary to write source code in a programming language to specify the
actual CASE tool functionality for the chosen situational method (Har97,
p.274), and thus does not qualify as a metaCASE tool by our definition.
The prototype implementation encountered a number of problems,
attributed to the lack of suitability of Maestro II as a platform for
metaCASE.

GOODSTEP (Frankfurt)

The GOODSTEP project (GOO95) extended the O2 ODBMS and built a
framework around it for building CASE tools. The GraphProject
framework component can generate graphical CASE tools from concise
GSTL pseudo-code, and indeed such a tool has been generated that can
transform a diagram into an O2 schema, although this has not apparently
been followed up. 12,000 lines of GSTL code were needed to develop a
CASE tool for British Airways (Emm97); whilst this amount of code places
it outside the realm of true metaCASE, the fact that the code expanded to

36

215,000 lines of C++ shows that the approach has benefits compared to
coding a CASE tool from scratch. Overall, GOODSTEP represents more of
a repository and framework than a metaCASE environment, like other
similar tools such as Ptech. As a repository, and thus in the completed
CASE tools, strong features are its high concurrency, small granularity of
locking and version management.

GraphTalk (Rank Xerox/Parallax Technologies/Socs)

GraphTalk appears to follow a similar transformational metamodelling
paradigm to MetaEdit. However, in addition to drawing a graphical
metamodel the user is required to specify update operations and checks in
the GraphTalk QueryLanguage (GQL), which is similar to SQL, and this is
all then used coupled with C++ to generate source code. No further
information could be found to confirm these statements from a brochure
and a user: the product appears to have changed hands several times, and
it appears not to be currently available.

Hardy (Edinburgh)

Hardy is mentioned in several places as a metaCASE tool, but it is
primarily a graphical diagramming tool. It thus can provide good support
for drawing diagrams conforming to various methods, but little support
for storing the conceptual data essential to CASE.

Maestro II (Softlab)

Maestro II (Mer91) has been used as the basis in the prototype
Decamerone CAME environment (Har97). It is more of a repository than a
metaCASE tool, and in addition to specifying the metamodel the user
must write code for e.g. storing conceptual data and performing graphical
operations (Bri95, p.27–32).

MetaDesign (Meta Software Corp.)

As their web page puts it, “MetaDesign is an easy-to-use flowcharting
tool8”. It has however sometimes been erroneously mentioned as a
metaCASE tool. It has none of the other prerequisites of a CASE tool, such
as different property types, code generation etc.

MViews (Waikato, NZ)

MViews (Gru96b) is a framework for building CASE tools using the
CoCoA meta-metamodel. Currently, the implementation requires hand-
coding repository and tool information from the CoCoA models, but a
prototype is under construction to automate this process, although the aim

8 http://www.metasoftware.com/prodmdesign.htm

37

is not to totally avoid coding in building a CASE tool. The interesting
features of MViews are that it has other prototype implementations which
variously provide CSCW support for CASE (Gru96a) and automatic
continuous maintenance of a parallel model in different methods (Gru95).
We await the integration of these research threads into a single
functioning environment with interest.

ObjectMaker TDK (Mark V)

ObjectMaker is a multi-method CASE tool. Method support for it can be
developed with the Tool Development Kit (TDK) or MethodMaker
(described above). The TDK allows customisation of methods by
providing “direct access to the predicate logic rules that create, control,
and pre- and post-condition all tool behavior”. Because the metamodelling
process requires writing code to specify tool behaviour, we do not count
this as true metaCASE.

SUMMARY

Examining a large number of tools has given us an insight into the various
ways that different parts of metaCASE functionality can be implemented. In
general, a metaCASE tool provides a way to describe a method, which can be
broken down into its static concepts, the constraints that govern how these may
be linked and used, and the symbols used in the graphical representation of the
method. In addition, some metaCASE tools require specification of some of the
functionality of the final CASE tool, whereas others generate this automatically
on the basis of the method.

For each part of the method description above, there is some kind of
language. The language may be programming language code, a logic language,
a textual language, or a graphical language. Where a graphical language is
used, it is normally first transformed to a textual language, but this need not
concern us: the metamodeller may work entirely with the graphical language.
Similarly, the textual language is often internally turned into code and
compiled to drive the CASE tool. Sometimes, textual languages are transformed
into logic languages used directly by the CASE tool; a logic language can also
be transformed into code. This gives us a good ordering on the ease of use of
these different types of languages: if language A for the metamodeller is
transformed to language B by the metaCASE tool, language A must be easier to
use. This is born out by practice: a graphical metamodelling language is easiest,
then a textual language, then a logic language, and finally code.

The table below takes the most important metaCASE tools examined, and
shows which kind of language they use for each part of metamodelling,
including specifying the CASE tool functionality if this is not fully automatic.
The manufacturer’s estimate for the time in man-days required to metamodel
an average-sized method, e.g. Structured Analysis, is also given: where no such
estimate is available I include my own view with a question mark. My own

38

estimates are conservative: recall addition of a method into Paradigm Plus was
estimated by the manufacturer to take over a year.

As can be seen, the times differ widely. The times are also a measure of the
complexity of metamodelling with that tool. Higher complexity implies more
time for the same method, and also a greater chance of problems later on, if
metamodelling follows the same pattern as other modelling efforts. However,
higher complexity could also allow more precise metamodels and thus better
support of the method. Taking this to an extreme, making a basic CASE tool
purely by programming would at the least require a man-year, and to take
advantage of the complexity of programming to provide more precise method
support would turn that into several man-years. Thus it would appear that the
benefits of complexity are outweighed by its problems: to achieve the same
basic results that can be achieved in a less complex language takes far longer,
and to use the complexity to improve on the results of the less complex
language takes much longer still.

At present, there are no quantitative empirical results as to how much the
more complex languages increase the time required for a basic metamodel, or
how much the extra precision they can offer helps the CASE tool end-user. It
appears though that the effect on the time is considerable, and empirical
research indicates that there is little point expressing fine details in a
metamodel. A study of expert users of the same method (Hof96) revealed that
the implicit ‘personal metamodels’ of the method they followed differed to a
considerable extent, even at a fairly high level of granularity (above the level of
manipulating individual objects). The authors concluded that it was not
desirable to capture the fine details of one user’s implicit metamodel, but rather
that more important was to include the main details, and allow variation. This
would imply a small rather than large set of constraints (allowing variation on
the model level), and the ability to change the metamodel on the fly, with
models automatically updating (variation on the metamodel level).

Thus whilst a metaCASE tool must be powerful enough to allow
modelling of all the conceptual structures of a method, the facilities for
expressing constraints need not be made so powerful, especially not where the
increase in power would mean more work to metamodel methods simply.

3.2 Problems

From this basic overview of the situation and descriptions of existing tools, we
can now move to examining more specifically the problems and issues that
have been identified with CASE, metaCASE and CAME. We divide the

Tool Concepts Constraints Symbols Functionality Days/method
MetaEdit Personal graphical graphical graphical automatic 3
KOGGE graphical logic textual graphical+code 10?
MetaView textual code graphical automatic? 10?
ToolBuilder textual textual textual textual 40
VSF textual code code code 80?

39

problems into five areas: poor success of CASE, methods changing when
applied, weak method integration in CASE, metaCASE needing extension, and
immaturity of CAME. For each problem area, we critically examine relevant
literature and products, giving a précis description and conclusions. The title of
each problem area identifies the problem and gives a short summarising
comment (in italics) on the conclusions we draw. At the end of each area we
bring together the conclusions from the material examined into a short
paragraph (in italics).

1: CASE tools have shown only fractional success…
both organisational and technical problems, CASE very important in future

It is now widely recognised that CASE tools, although in general helping in the
situations where they are applied, have failed to have the expected impact on
the market.

In a survey, ISD managers were found by Norman and Nunamaker
(Nor89) to recognise the benefits of CASE as providing improvements in
quality, maintainability, and productivity. Siltanen (Sil90) showed that these
improvements were made possible by a strategic orientation in the company.
Correspondingly, Parkinson (Par90) found that CASE is not taken into use
effectively if there is no existing methodology in use in the company: if there is,
then CASE can make enough of a difference on the productivity side that
resources can be released to focus on quality.

The basic use principles of CASE have remained unchanged from the early
days: for instance, Charette (Cha86) describes how a software engineering
environment could be useful at the various stages of software development,
identifying principles that still form the basis of CASE use today. Similarly,
some of the problems remain the same, and will probably always require more
work: McClure (McC89) lists user-friendliness, intelligent method support, and
reuse support, all of which are still issues that users cite today.

One of the main tool-centred problems in CASE is the method support. In
a survey study of CASE tool selection (Sav93), the most highly emphasised
decision factor was the ‘range of application area of the tool’. This range can be
improved in two ways: vertically by adding support for methods in different
phases of ISD, and horizontally by adding alternative methods for different
contingencies in the same phase of ISD. Equal first with that criterion were
‘compatibility with other tools and methods’, emphasising a broad and non-
partisan method support, and ‘support of design methods in use’, again
motivating a wide method base, but also pointing towards method integration,
and configurability and flexibility of method support.

40

These findings tie in with those of other empirical researchers, who agree
that fixed method CASE tools are of limited use in real-life situations such as
information systems planning (Bri90, Wij91, Ste93). However, in spite of these
problems, Kusters and Wijers (Kus93) found that 89% of ISD managers see the
future importance of CASE in their organisation increasing.

Thus CASE has shown that it can offer substantial benefits, and the market seems
committed to its use. Current CASE effectiveness is however plagued by organisational
problems and problems in the tools, notably the lack of support for the user, and the
inflexible, unintegrated method support.

2: Methods in use are different from defined methods…
and thus we need flexible, modifiable method support in CASE tools

As recently as 1988, Chikofsky and Rubinstein (Chi88) could say that actual
method use in organisations was rare. Whilst still not the norm, there are now
sufficient organisations using methods regularly for investigations to have been
carried out into the nature of how a method is taken into use in an organisation.
Aaen et al. (Aae92a), in a study of CASE and method use in the Netherlands
and Finland, found that a significant minority (21–45%) of organisations needed
changes to the methods and tools before they were used. Correspondingly,
Aalto (Aal93) found that in actual use Rumbaugh’s OMT method (Rum91)
differed from that specified, being adapted to the local situation, thus
motivating flexible method support in CASE tools. Ter Hofstede and Verhoef
studied expert users of a method (Hof96), and found that there were significant
variations both between experts, and also with the same expert at different
times. Stobart et al. (Sto93), combining the work of four research groups in three
countries, found a major criticism to be that CASE tools often required a change
to methods other than those used in the organisation.

In a survey of how CASE tools are taken into use Aaen (Aae92b) found
that tools must support existing work routines, and offer immediate
advantages. Otherwise the bootstrapping fails before any long term advantages
can be realised. Similarly, Urwiler et al. (Urw95) tested 70 users to find factors
influencing the success of a specific CASE tool’s introduction. Existing use of
the method supported by the tool was the most significant factor influencing
perceived quality improvements.

The degree to which the user of a method is allowed to deviate from it
varies between methods, and also between organisations. The more prescriptive
a method or organisation is, the less it will allow individual variation, and the
more suited it is to the application of fixed method CASE tools. Even within
fixed method tools, there is some scope for variation: Vessey et al. (Ves92)
examine 12 such CASE tools, and identify three different philosophies in how
strictly the tools implement the constraints from the methodologies. Restrictive
tools do not allow any deviation, giving an error message at the time the user
attempts to deviate from the method; guided tools give warnings either at the
time of the action or when exiting from the editor; and flexible tools give
warnings when exiting.

41

Of all areas of information systems modelling, information systems
planning (business systems planning, business process re-engineering etc.) has
perhaps the most prescriptive methods. Huge manuals list (supposedly) every
model and item of data that should be produced, and give detailed instructions
for how to do this. Even here, however, Stegwee and van Waes (Ste93) conclude
“the next generation of CASE tools for ISP should be customisable”.
Interestingly, they rule out the possibility of a separate metamodelling
environment producing a metamodel or CASE shell, saying “the tool itself
should provide facilities for introducing new modelling techniques… by
modifications in the metamodel of the tool”. They thus favour an integrated
metaCASE and CAME environment.

Cronholm and Goldkuhl (Cro94) analysed the kinds of method
customisations that take place, and the motives for them. They found the main
reason for choosing a metaCASE tool for normal CASE was that there existed
no existing tool that supported the method they were already using, and
programming a CASE tool was prohibitively expensive. As we have mentioned,
methods greatly outnumber tools, thus this is in theory true for almost all
organisations. However, there is often a tool that supports a method close to the
one in use, and many organisations therefore make do with the reduced tool
support which is available. This path is more dangerous than is realised, and
often embarked on too lightly: Le Quesne (LeQ90) shows that changes in
working practices and systems development methods should be evolutionary
when introducing CASE, rather than trying to force an existing method in use
to fit a tool, or a fixed tool to fit an existing method.

In the choice of metaCASE tool, Cronholm and Goldkuhl found, in
addition to normal factors for buying a product, that the degree of adaptation
possible and the presence of support for some parts of the actual method in an
existing customisation were common motives. The time required to develop
support for the new method varied from three to thirty months, depending on
the complexity of the method and resources allocated. Some projects ceased
after only some of the goals were met, because of lack of resources.

So far, we have worked on the tacit assumption that, although a method-
in-use may differ from the method on paper, at least the method on paper will
remain the same. There is no doubt, though, that methods evolve (Bubenko and
Wangler (Bub92 p393) list examples) and an organisation’s ISs need to evolve
quickly to work in a rapidly changing and complex information arena (Ste93).

Whilst ISD methods are useful, in practice no one method is sufficient for all
situations, and a selection of a method suitable for the contingencies must be made.
Even then, this method will be altered in actual use. CASE must support the methods
already in place in an organisation, and allow them to change as the project evolves.

42

3: CASE support for multiple, integrated methods is weak…
new CASE tools must provide better linking between methods and their models, in a
way the user chooses

The weakest part of CASE tools today is their ability to support method
integration. Although a CASE tool may support multiple techniques or diagram
types, the linking of data in a graph of one type to that in a graph of another
type is poor.

Current CASE tools often provide only one linking mechanism between
graphs, namely explosion. This links an object in one graph with another graph,
so that the second graph can be easily opened starting from the object. The
actual functionality and semantics of this link varies, but it is rarely sufficient in
functionality or expressive power to allow flexible, interface-based reuse, in a
manner similar to CAD or chip design. In this respect it is interesting to note
that Savolainen (Sav93), in a survey of CASE in use, finds that ‘Reusability of
descriptions’ was one among four advantages of the use of CASE tools that rose
as a group above all the other reasons. Similarly, Banker and Kauffman (Ban91)
studied 20 projects in the banking sector, and found an order of magnitude
improvement after the introduction of CASE, with reuse an important driving
factor. Thus, reuse support is an area where CASE is already showing success,
and effort on improving the functionality there is well-placed.

Hochstettler found that in practical use information is seldom updated
retrospectively into methods from an earlier ISD phase (Hoc86 p.17), thus
leaving the data in the repository semantically inconsistent.

Lehman and Turski (Leh87) emphasise the need for method integration, in
addition to flexible methods. Similarly, Goldstein (Gol90) finds that tools
should be capable of ‘learning’ the methods required, which should be
integrated so that information can be shared between them.

Goldkuhl and Cronholm (Gol93), in a review of metaCASE tools, find
insufficient support for method integration on the type level, which is also
reflected on the instance level by poor user interfaces which prevent work in
multiple methods.

From a large survey in three countries, Stobart et al. (Sto93) present main
criticisms of CASE tools, which are stifling their adoption and use. First among
these are the lack of the possibility to use several methods in an integrated
manner, and the poor integration between tools for different software
development phases. Tools are criticised for forcing a change to methods other
than those already used in the organisation. They also find that the integration
of the visual representation with the conceptual repository data is weak, and
that there are no multi-user facilities.

A survey of non-use of CASE in Slovenia (Rup95) found the most cited
problem to be lack of integration, both within a CASE tool and with other
existing tools and procedures. Combining their results with a survey of CASE
users in the UK, they find the strongest future requirement is for better
integration with programming via code generation and reverse engineering,
followed by multi-user functionality, method aspects, and customisability.

43

Brinkkemper (Bri93) provides us with a framework for analysing method
integration (he calls it modelling transparency). He gives four levels:

0. Stand-alone CASE tools

1. Single window, shared repository
Links can be made between diagrams, but to follow a link the user must close
the current diagram

2. Multi-window, shared repository, fixed limited range of link types
Updates in one window are reflected immediately in another, but links can
only be created in certain situations

3. Multi-window, shared repository, much freedom to create links
Links can be created at will, in a manner similar to hypertext (Smi88). This
functionality is called Hyper-CASE by Cybulski and Reed (Cyb92).

Brinkkemper states that most current CASE tools support level 1, and better
support would be “an important functionality to increase the productivity of
CASE tools.” He goes further to say that a high degree of method integration
“is one of the absolute requirements for advanced systems development”.

Further evidence for the importance of a natural user interface is provided
by Chau’s survey of around 100 CASE users (Cha96), which found that ease of
use was the strongest determining factor on acceptance (0.44, where 1 totally
determines and -1 totally inversely determines), with considerably more impact
than organisational factors (transitional support and perceived short and long
term benefits).

Evidence of the increasing importance of CASE was found by Kusters and
Wijers’ survey (Kus93), in which 89% saw the future importance of CASE in
their organisation increasing. The three top selection criteria for CASE confirm
our findings above: degree of coverage of techniques already in use, degree of
integration between techniques, and quality of man-machine interface.

CASE tool support for the integration of different parts of a method is poor,
severely weakening their applicability as tools to support the whole life cycle of an ISD
project. Better facilities are needed to support reuse and other linking between graphs,
and to better integrate information in multiple windows via common conceptual data in
the repository.

4: MetaCASE is useful but needs extending…
especially its data models, user-friendliness, and method integration

Hochstettler (Hoc86) states that a datamodel (metametamodel) needs an easy
computer implementation, making it easy to use to define methods. He found
that relations are not good at representing methods, and models that use graphs
are better. Attribute grammars were good (cf. Sae94) but too complicated to use,
and definitions were unnecessarily large. He created the TRIAD
metametamodel which used a combination of these, and implemented it for
proof of concept. His system had only poor support for intergraph links, and
only two kinds of relationships, one for hierarchical and one for ‘other’ kinds of

44

relationships. The definition of the graphical aspects were mixed in with the
conceptual, assuming only a single representation of each concept. MetaCASE
in his tool took place on a low level: the user had to write his own interfaces
and extended commands, and there was no interactive editing. The
metamodelling was carried out via a primitive command-based interface.

Tagg (Tag90) points out that, while there are numerous papers on CASE
technology, methodologies, and successful application of methodologies in
software design, there are but few on customising CASE environments to
support new methodologies. He used Customizer (Exc87) to model the Box
Structures Method. For him, the most important result was the validation of the
strategy of using a tool customiser. The time to create different versions was
minimal, providing the opportunity to choose the best implementation. Whilst
these results can rightfully be regarded as most encouraging for metaCASE,
they need balancing with other work with more complicated methods (BSM has
only seven components, two relationships, and one graph, plus two other
graphs that are restrictions of the first).

Amundsen and Christoffersen (Amu87) used Excelerator and Software
Through Pictures to model the SUSI method. They found these metaCASE tools
had good support for modelling individual components, but only poor support
of links between graphs, i.e. method integration.

IBM chose to use Systematica’s Virtual Software Factory metaCASE tool
(Poc91) in building its BSDM support tool. Haine points out the economic
justification of this: “building a toolset from scratch would have taken longer,
[and] been very much more costly” (Hai92, p.140). He estimates that by using
metaCASE the user ends up with an organisation wide licence for a full life-
cycle toolset for less than the cost of equipping 20 developers with some
standard fixed-method CASE tool. With other metaCASE tools, the situation
could have been even better: VSF cost around £100,000 and was thus probably
the most expensive metaCASE tool available.

Jarzabek and Ling (Jar96) used MetaEdit in the development of a BPR
method and its implementation. They note the usefulness of the metaCASE
environment in development, as the method and tool can be easily changed as
required, allowing experimentation in a cost-effective manner. Whilst praising
the ‘powerful report generating facilities’, they found the lack of a unified
repository for all models a problem, and would require a platform independent
solution for further work.

Goldkuhl and Cronholm present a framework for the design and
evaluation of metaCASE environments (Gol93), and identify problems with the
ease of use of their metametamodels, the power of the these models to
accurately describe the concepts and representations of methods, and their
ability to integrate methods.

Tolvanen et al. (Tol96) surveyed existing research on method engineering,
categorising it according to research subject (technology, language or
organisation) and research paradigm (survey, field study, laboratory
experiment, case study, action research, applied, basic or normative). They
found that several areas were significantly over-populated, while others
showed no current research. In particular, the emphasis was on constructing

45

new tools and theories, rather than evaluating existing ones. Whilst they found
this emphasis to be expected of a new field, with few possibilities for real-world
empirical observation, the total lack of any research in the laboratory
experiment paradigm (the only totally empty paradigm) appears worrying.

MetaCASE has been demonstrated to be effective, but current tools’
metametamodels are often hard to work with, and insufficiently powerful to allow
accurate construction of an integrated set of methods. Empirical research is needed,
albeit only laboratory experiments, to justify claims, examine the efficacy of existing
approaches and explore the feasibility of new approaches.

5: CAME a largely unknown area, where research is only just starting…
need better support for method engineers, better linking of CAME to metaCASE

In the seminal paper on method engineering (Kum92: an earlier version was
published in 1988), Kumar and Welke present it as a systematic discipline akin
to software engineering. They stress the importance of reuse of method
components, and of the analysis of the results of the engineering by observation
of methods in use.

Tolvanen and Lyytinen (Tol93) also stress the importance of a systematic
approach to metamodelling and method development, and present a method or
meta-method for carrying this out. This is further developed, with more
emphasis on the method engineering aspects, especially how to carry it out
incrementally, in a later paper (Tol95).

Cronholm and Goldkuhl (Cro94), in a survey of metaCASE in use, find no
evidence of a meta-method in use.

Part of method engineering is the ability to analyse a methods into its
components (metamodelling) and to compare these analysed methods.
Brinkkemper et al. (Bri89) use this to establish ‘method companionship’, the
way a CASE tool works with a method. Oei and Falkenberg (Oei94) use
metamodelling to establish hierarchies among sets of related methods, allowing
more informed choice of method for a given contingency (Kot84). Similarly,
Rossi and Tolvanen (Ros94a) metamodel methods and use the resulting
metamodels as a better-defined, more objective basis for comparison of the
methods.

Harmsen et al. (Har93, Har94, Har97) have described a prototype CAME
tool, Decamerone, which assists the method engineer in selecting among
fragments from several methods to assemble a method suitable for his current
contingency. The fragments include information about their semantics, likely
range of application, and their description in the metalanguage of Maestro II.
Despite problems with the prototype, it demonstrated the beneficial
possibilities of an environment integrating metaCASE and CAME.

Harmsen et al. (Har94) also examined other existing CAME tools, such as
Anderson Consulting’s Solution Configuration Tool (Hid93) and Ernst and
Young’s Navigator system (Ern93). They criticise these as they allow selection
of fragments from only one method, reducing the possibilities for configuration
and the likelihood of a good solution to the current contingency. Moreover,

46

they lack customisable CASE functionality (Har97, p. 246), thus methods cannot
be tested as they are developed.

Heym and Österle made use of VSF (Poc91) in the construction of their
MEET method engineering environment (Hey93b, Hey93a): an interesting use
of metaCASE to build, not a CASE tool, but a CAME tool. The actual support
available for CAME is limited: the inherent low-level metamodelling of VSF
makes the tool more like a metamodelling aid than an environment where
methods could be systematically engineered and tested.

Both Decamerone and MEET, probably the two most notable attempts at
broad CAME support with metaCASE, met problems because of the low level
of metamodelling (in practice coding) required in the underlying systems they
used for metaCASE. This provides a strong indication that a powerful
metaCASE tool with metamodelling on a high level would be a critical success
factor for a CAME tool.

There is a significant gap between CAME and metaCASE that needs filling:
CAME tools currently do not support metaCASE (modelling methods and supporting
them in use), while metaCASE tools work on too low a level, providing little support for
the process of developing and testing methods. An environment that linked CAME and
metaCASE would improve the efficiency of both, and empower still better studies of
method classification and contingency factors.

6: Tool support for CASE and CAME largely single user…
need integrated support for multiple methods in multi-user, repository based tools

CASE technology was originally intended as support for single developers in
designing and documenting their part of the system. The current direction and
need for the CASE tools of the future is support for multiple users and multiple
methods. Stobart et al. (Sto93) found the lack of multi-user facilities to be a
major criticism of existing tools. Looking broadly at the field we can see that
solutions for method integration are being promoted in two different
paradigms, metaCASE and open CASE. MetaCASE proposes the creation of
CASE tools which can be configurable for any method, whereas open CASE
sees many fixed-method CASE tools communicating via common standards.

Currently, metaCASE is leading in terms of commercially available
implementations, the support for open CASE having become stuck in the mire
of unadopted standards and multiple conflicting standards. The nearest thing to
open CASE so far is the ability of certain CASE tools to import information
from certain other CASE tools. Commercial considerations prevent the
implementation of similar export functions: manufacturers want to keep
customers disinclined to move their data to the tool of another vendor. The
integration of CASE tools thus remains on a static level: data is not shared
dynamically, and updates are propagated manually, in only one direction.

One extension of this current solution of is presented by Papachristos and
Gray (Pap94). Their idea, which they call federated CASE, is based on a central
tool that would handle the conversions between the various CASE tools. For
each CASE tool there must be an input filter, that would transform the data into

47

a common format, and an output filter, that could take data in the common
format and turn it into the input format needed for that tool. A similar
philosophy is seen in the attempts to create a common format for CASE data,
called CDIF (CDI91). Despite the backing of major players, CDIF progress has
been slow, and many areas remain undefined. In particular, the CDIF standard
only allows transfer of models of a certain severely limited set of methods
(basically Structured Analysis, with support for object-oriented methods under
development). This effectively curtails its usefulness, as addition of a new
method to CDIF requires several years of work. A further problem is the lack of
implementations adhering to the CDIF specifications: CASE tools that claim to
support CDIF actually support their own dialect, which may or may not be
compatible with the dialect in other CASE tools.

Both federated CASE and CDIF offer only static data exchange, with all
the ensuing problems of consistency. Similarly, they only really offer help for
models in different CASE tools that follow the same methods: exchanging
information between different methods on this basis is largely a semantic
impossibility (Bub92, p.405). Further, working with a heterogeneous set of tools
is highly unsatisfactory, as they are not integrated with, for instance, similar
user interfaces: as Stegwee and van Waes (Ste93) quote, “A computerized
design tool is a great help. Two computerized design tools are a disaster.”
These problems are multiplied significantly in the multi-user situation, for
which these offer no help. Thus, although federated CASE and CDIF may have
their uses in certain situations, we can rule them out as a serious answer to the
overall problems in this field.

Whilst metaCASE and open CASE are often seen as competing solutions,
Bosua and Brinkkemper (Bos94), in presenting a review of the current state of
the field of CASE integration, point out that we need both better integration
within environments (as promised by the next generation of metaCASE tools),
and better integration between environments (as promised by open CASE).

Some standards have appeared for the architecture of open CASE tools,
e.g. the ECMA PCTE (Tho89), which suggests multiple tools accessing common
data in a shared repository, and presenting it to the user via a common user
interface and display conventions. Similarly, standards for the repository, the
heart of CASE data integration, have been suggested, but none of these appears
to have taken off. PCTE included a description of the repository as well as the
architecture, and suggested a move away from the widely-used SQL databases.
SQL continued to be used, however, by IBM’s repository manager for
AD/Cycle, also proposed as a standard (IBM90), and as the basis of IRDS
(ISO89), the ISO standard for CASE repositories. In an analysis of these
standards, Olle (Oll92) concluded that “the inconsistencies among the three
approaches threaten the ideal” of open CASE.

Whilst true open CASE implementations are not available, the theory of
open CASE has two major advantages over most current metaCASE tools.
Firstly, open CASE per se already provides support for multiple users accessing
a common repository, whereas most metaCASE tools are single user even for
CASE work. Secondly, open CASE already includes the idea of integrating
multiple tools, possibly even with multiple representations of the same

48

conceptual information stored in the repository (Stobart et al. (Sto93) noted this
need in their survey); current metaCASE tools have only one editing tool, for
diagrams. For metaCASE to offer a viable alternative for large scale projects, it
too must move to adding multi-user support, and multiple editing tools for
different representation paradigms.

An important issue in either solution is the nature of the underlying
repository. In order to provide adequate support for multiple users, reuse, and
changes to methods this must be a true object-oriented repository, and not a
file-based or relational storage system, as is common in current tools.

Thus, despite considerable effort to promote CASE environment
integration, as far back as 1989 Luchner et al. (Luc89) could sum up the current
situation, saying that tools can be integrated either by an exclusive mutual link
between two tools, which is an optimised but tool-pair specific solution, or
different tools could be connected by a common data model for integration,
which is a general but very complex solution. The field must move towards the
latter, more general solution, and metaCASE currently appears to provide the
better chance of success.

Of course, as Bosua and Brinkkemper (Bos94) mentioned there is nothing
to stop the integration of several metaCASE tools via open CASE standards, if
and when such standards become apparent. The main problems remaining with
this solution would be the integration of the different meta-metamodels used by
the metaCASE tools, although this would be eased in many cases by the fact
that most metaCASE tools use some extended ER variant as a meta-metamodel.

Need multi-user support for CASE over multiple methods. Transformation-based
schemes (CDIF, federated CASE) cannot provide a true solution, although they may be
useful in certain situations. Open CASE theory useful for multiple tools, methods and
users, but lacking in ability to modify methods, and actual working implementations.
MetaCASE useful for multiple methods and method modification, and has existing
implementations, but needs multiple tools and multi-user support.

49

4 Research problem

Having stated our basic framework for research, and examined the current state
of the field and its issues, we now collate together these issues to provide us
with a research problem. To do this, we take two studies, each of which
provides clear results and a good identification of problems, and agrees with
the majority of other recent surveys and research in their area. The first
examines the field of CASE (Sto93), the second (Gol93) the field of metaCASE.
First, we shall briefly describe the research environment, as it naturally affects
the choice of research problem and research methodology.

4.1 Research environment and limitations

This research has taken place at the University of Jyväskylä in the MetaPHOR
research group, funded as the MetaPHOR and CAMSO projects (Lyy94, Lyy97).
The aim in the MetaPHOR group has been to examine metaCASE and CAME
and produce a working system to support them. The research builds on the
group’s work in the earlier SYTI project, which developed a prototype of the
first graphical metaCASE environment, MetaEdit (Smo91a), which provides the
same graphical support for metamodelling as for standard CASE modelling.
Constructive research thus plays a central role in the research methodology of
the MetaPHOR project, as part of a wider multi-methodological approach.

Because MetaEdit is the most familiar metaCASE tool for us and also
among the best existing tools (admittedly according to our criteria!), it forms a
natural starting point for continuing research in the MetaPHOR group.
However, the decision was made to build upon the theories and experience
developed earlier, rather than the implementation: in a sense, an application of
the ‘build one to throw away’ principle. This would allow a freer hand in the
design, in particular in the ability to include new ideas from others’ research as
well as our own. Thus while we use MetaEdit below as a measuring stick by
which to judge the performance of metaCASE tools according to the criteria
developed by empirical researchers, this thesis’s task is not to improve
MetaEdit itself, but rather to improve on MetaEdit, and other metaCASE tools.

Whilst metaCASE may be considered the core area of research of the
MetaPHOR research group, the research and integration of results on other
related areas is of equal importance. Such related areas include process and
agent modelling (Mar94), the method engineering process (Tol94), tools and
metrics for method engineering (Ros95), and hypertext and design rationale
(Oin97). The general omission of these topics from this thesis does not therefore
imply a perceived lack of importance; they are simply being studied by the
other researchers referenced above. Thus I refer to these only as necessary, and
do not intend to make significant research contributions directly in these areas,
although advances in the underlying repository or meta-model will of course
have beneficial effects in some of them, particularly the method engineering
tools and process.

50

It was already decided at an early stage that this thesis would be in the
form of a collection of articles, rather than a monograph. This has the benefit
that the articles could be published over the course of the research, making the
research results available to other researchers, and also obtaining feedback from
them. The weaknesses of such a thesis format are the inevitable repetition of
some basic points in the introductions of each article, and the possibility of
some information in earlier articles becoming outdated by the time the whole
thesis is ready. In a fast-moving field such as metaCASE, especially where lack
of communication between researchers has been a problem, it is to be hoped
that these benefits to my research and the research community outweigh the
weaknesses in the format.

These facts should be borne in mind as we develop our research questions
below.

4.2 Input from CASE

Of the many sources of data on CASE use, Stobart et al. (Sto93) provide us with
a good, recent, multi-national survey of CASE tool use. Much other survey
work has been limited to the North European countries, often the Netherlands,
limiting the trust that can be placed in the generalisability of the results. Stobart
et al. use four research groups in three countries: Australia, the UK, and the
Netherlands. Their findings are hardly surprising, and correspond closely with
those of other recent surveys. They summarise their overall, world-wide
findings on CASE tool problems thus:

1. tools do not offer the possibility to use several methods in an integrated
manner

2. the integration between tools for different software development phases is
poor

3. tools often require a change to methods other than those used within the
organisation

4. tools for project management are not integrated with tools for the other
software development activities

5. the coupling of design data to the tool repository is weak

6. there are no multi-user application development possibilities for
communication between the CASE tool users

The first and second points require horizontal and vertical method integration.
The third point requires flexible customisation of method support. The second
and fourth points requires better integration of different tools, from different
levels and phases of ISD. The fifth point, together with the previous
requirement, motivates the separation of the conceptual data in the repository
from the representational data shown by the tools, so that all representational
data has a corresponding conceptual form in the repository (from the fifth
point), but there can be many representations of the same concept (to allow the

51

integration between data in different tools mentioned in the second and fourth
points). The data model used in the repository must be made more powerful to
enable the representation of all the kinds of information necessary. Together
these points motivate the need for different tools to represent the different
representational paradigms used by methods at different phases and levels of
ISD. The sixth point requires a multi-user tool with conceptual information
shared at a fine granularity of data (for maximum ability of users to work
together simultaneously) and update intervals (to ensure work is on the most
up-to-date, released information).

4.3 Input from metaCASE

Goldkuhl and Cronholm present a framework for the design and evaluation of
metaCASE environments (Gol93). Their findings correspond with those of other
researchers (e.g. Mar93, Lou92). They derive the following requirements for
next generation metaCASE:

1. multiple simultaneous representational paradigms: ‘graphical, textual,
matrices, tables etc.’ (Gol93)

2. better graphical symbol support

3. integration between methods

4. underlying conceptual metamodel stored in the CASE repository

5. flexible way of working for different analysis strategies

6. better rules and syntax checking

7. rich and powerful metametamodel

8. method definition approach easy to learn and use

It is interesting to note that by their third point they rule out CASE application
generators that produce a new CASE tool to support a method, and instead
favour integrated metaCASE and CASE environments. In examining several
currently available metaCASE tools they find the textual metamodelling
languages hard to use, but praise MetaEdit’s graphical metamodelling as ‘user-
friendly and promising’ (Gol93).

The current MetaEdit (Smo91a) does not satisfy points 1 (multiple tools), 3
(method integration), and 7 (powerful data model), whilst there could also be
some improvements on the second and sixth points. There is no support at all
for 1 and 3, and whilst OPRR is among the more powerful metametamodels,
Smolander (Smo91b) recognises already at the time he defines it that it is not
powerful enough to represent newer methods involving complex objects (e.g.
Booch (Boo91)) or n-ary relationships (e.g. NIAM (Nij89)). Point 4 (metamodel
in repository) is open to interpretation: certainly the metamodel is stored, but
the use of a file-based system instead of a repository is a source of some major
drawbacks in MetaEdit.

52

4.4 Research problem definition

Our research problem was stated as:

The research in this thesis aims towards metaCASE tools which would better
answer the needs and criticisms of CASE tool users, in these two particular ways:

• The process, concepts, and tools for metamodelling should be improved

• The metaCASE tool should be capable of being more easily and accurately
configured and tested for a wider range of interlinked, evolving methods

From this, and the presented needs and criticisms of CASE and metaCASE tool
users, we can now state more exactly the requirements for these better
metaCASE tools. The new metaCASE tools must offer:

• a more powerful common underlying conceptual meta-metamodel, with
complex objects and n-ary relationships, and supporting the following three
requirements:

• multiple tools for different representation paradigms (diagram, matrix, table,
(hyper)text, etc.);

• multiple methods, fully integrated and customisable incrementally side-by-
side with models, following engineering principles;

• simultaneous multi-user access at fine granularity via a repository, allowing
reuse and linking to other users’ work.

53

5 Research methodology

Having identified our research problems and described the environment in
which the research takes place, we can now move to selecting a research
methodology that will best direct and describe the way we address the research
problems.

5.1 Choice and description of methodology

Wynekoop and Conger (Wyn91) divide CASE research along two dimensions,
research method and research purpose. They adapt Scott Morton’s classification
of research methods (Mor85) to give eight research methods: case study, field
study, laboratory experiment, action research, survey and basic research, which
together account for 20% of the research analysed, and applied research and
normative writings, which account for 80%. They identify this ‘bias’ as ‘stalling
more rapid development’ and ‘limiting what can be learned for future
development’. Their survey is based on research on CASE published 1987–1989,
mostly 1987 and 1988. Of the 13 studies of CASE in use mentioned in Section 3,
ten were published after this period, showing that the research world has
responded to this imbalance and carried out investigations on how CASE is
used, its successes and failures.

These studies of practice thus provide us with the data we need to
motivate future development. Clearly the process of assessment cannot
continue indefinitely with no new constructive research: at some point we need
to apply these research findings to make a new generation of CASE tools, or in
this case, metaCASE tools.

Whilst Wynekoop and Conger provide categories for constructive
research, their framework is subtly changed from that of Scott Morton, and
even throughout the course of their paper, with the result that the number of
categories classifying constructive and related research is reduced while that of
evaluative research grows. This renders their framework less useful than it
could have been for classifying research of a constructive nature.

Nunamaker, Chen, and Purdin (Nun91, Nun92) provide a research
framework particularly designed for research involving systems development
or construction. They defend systems development as a research methodology,
showing how it fits into the common research pattern of ‘problem, hypothesis,
analysis, argument’ by likening it to ‘proof-by-demonstration’. They stress the
importance of a multi-methodological approach that integrates four strategies:
theory building, systems development, observation, and experimentation.
Research in the strategies is mutually supportive (Figure 4): a theory “suggests
insights on issues, supports and is supported by tool development, and is both
a precursor for and an outcome of experimentation and observation” (Nun92).

54

Theory
Building

Systems
Development

Observation Experimentation

Conceptual frameworks
Mathematical models

Methods

Product development
Technology transfer

Prototyping

Survey studies
Case studies
Field studies

Computer simulations
Field experiments
Lab experiments

 FIGURE 4 A multi-methodological approach to IS research (Nun91 p.94)

Theory building includes the development of new ideas and concepts, and
construction of conceptual frameworks, new methods or models, e.g. data
models. Theories can suggest research hypotheses, guide and enable research.

Experimentation includes research methods such as action research,
laboratory, field and simulation experiments. It may attempt to validate
theories, or look at issues of acceptance and technology transfer. Its results can
be used to refine theories and improve systems.

Observation relies on unobtrusive research methods such as case studies,
field studies and surveys. It is often used when little is known in a research
area, to provide hypotheses for testing or to focus later research.

Systems development consists of five stages: concept design, architecture
construction, prototyping, product development, and technology transfer.
These largely correspond to the five phases of the overall systems development
research methodology, where prototyping and product development are
subsumed under product development and preceded by system analysis and
design. This imperfect matching appears to have adversely affected the
discussion of the phases, where some of the clarity and obvious application
present in the figure and its four strategies is lost. The basic content of the
phases remains clear.

55

1. Construct a conceptual framework and decide a research problem
The conceptual framework serves as a foundation for the research in terms of
direction and description. The examination of the field necessary to such a
framework provides an understanding of the situation and is used to
generate a research problem. The problem then motivates theory building
within the conceptual framework.

2. Develop a system architecture
The architecture provides a route map for the system building process, and
shows how the various components relate and interact. The environment
constraints, development objectives, and resulting system’s functionality
should be stated, with verifiable requirements. The emphasis will often be on
reporting research on “new functionalities or innovative user interface
features” (Nun91, p.99) rather than system speed.

3. Analyze and design the system
This involves the understanding of the domain, the application of relevant
scientific and technical knowledge, and the creation, synthesis and
evaluation of alternatives. The design should be theory-based and modelled
abstractly, rather than environment-specific. Data structures should be
considered and specified.

4. Build the system
A prototype can demonstrate feasibility and prove theories about
functionality. For real-world testing the prototype, if it proves successful,
should be developed into a product and taken into use in an organisation.
The implementation process provides useful feedback to earlier phases.

5. Experiment, observe and evaluate the system
Once there is a working system, it can be tested against the requirements,
and its effectiveness in use examined by empirical studies. The results of the
tests are fed back into further development of the system, the concepts, and
the hypotheses.

Systems development research must conform to five criteria (Nun91, p.101):

• The purpose is to study an important phenomenon in areas of information
systems through system building

• The results make a significant contribution to the domain

• The system is testable against all the stated objectives and requirements

• The system provides better solutions to IS problems than existing systems

• Experience and design expertise gained from building the system can be
generalised for future use.

The constructive or systems development approach is described as “a critical
contributor among the methodologies available” (Nun91). As our research
fulfils the five criteria above, and the methodology otherwise provides a good
framework for this research, we adopt the systems development research

56

methodology as a framework for the description of the research in this thesis,
and also to motivate and direct the research itself.

5.2 Application of the methodology in this research

First we shall look at the research prior to this thesis, which provides its starting
point. As can be seen below, this forms one whole cycle of our research
methodology. Second, we examine the research presented in this thesis, which
provides a second complete cycle through the methodology. The icons on the
left show roughly how much each type of research strategy is concentrated on
in the adjacent paragraph. Bold text in the paragraphs shows a research
strategy, and underlined italic text refers to a research question.

S
O E

T Looking at the state of the practical and research field of CASE at the
start, we saw that there are many CASE tools in use, but that they
were not producing the needed benefits. The many case studies, field
studies and surveys on CASE in use provided us with a large body of
observation research, which motivates and directs our research.

S
O E

T The conceptual framework for ISD used in the MetaPHOR project
comes from the OPRR model (Smo91b), and its application in the
MetaEdit system’s development (Smo91a). The research on MetaEdit
presented in (Smo91a) gives us a theoretical framework with three
levels of ISD (metametamodel, metamodel and model levels) and
two dimensions of information in a metaCASE tool (type-instance
and conceptual-representational).

S
O E

T The commercial version of MetaEdit has been taken into use in over
30 countries, and used to model over 50 methods (graph types). Its
use has also been examined in experimental situations (Gol93,
Ros94a).

Thus, the starting point for this work is observation of existing CASE tool use
and problems (e.g. Nor89, Aae91, Kus93, Sto93), some theory on metaCASE, a
prototype system, and some experimentation with this system (Gol93,
Ros94a) and other similar systems (Gol93, Mar93). This provides us with a first
cycle of incremental systems development, including all four strategies, from
which to launch this second cycle.

S
O E

T The introduction to this thesis looks at the existing situation and
history of CASE and metaCASE, and outlines the current needs for
development in the field (observation). Some preliminary theories
and hypotheses are built, and the conceptual framework for the
research established (the first phase in the methodology). The
analysis of the needs motivates some ideas for the second phase of
the methodology, architecture development, and provides our three
research questions: a better data model, multiple tool support, and
multiple, integrated method support.

57

S
O E

T The first paper, What’s in a Relationship, is motivated by the need
for improvements in the meta-metamodel of metaCASE tools on a
conceptual level, as stated in the first paper. These improvements
give clarity and ease to metamodelling, and also provide beneficial
results for implementation, in particular by allowing incremental
method engineering, and improving the support for co-operative
multi-user work. The paper thus builds theories to support the
design of the system, and helps in the development of the conceptual
framework (the first phase in the methodology). As it extends to
considering data structures, it also covers part of the third phase of
the methodology and some systems development.

S
O E

T The second paper, MetaEdit+: A Fully Configurable Multi-User and
Multi-Tool CASE and CAME Environment, summarises and explains
the problems of existing CASE technology, and presents the GOPRR
meta-metamodel, architecture and metamodelling tools of MetaEdit+.
It shows how GOPRR and the metamodelling tools support the
incremental creation and use of multiple integrated methods. The
description of GOPRR extends the theory presented in the previous
paper from relationships to the whole meta-metamodel, and the
architecture and metamodelling tools represent the result of the
systems development of MetaEdit+.

S
O E

T The third paper, MetaEdit+: CASE Functionality to Support
Production, Coordination and Organizational Control and
Innovation describes the MetaEngine, the functional heart of
MetaEdit+, and its tool integration strategy. It further concisely
describes each modelling tool in MetaEdit+, thus complementing the
previous paper, which described the metamodelling tools. The main
focus is thus on the multiple tool support of MetaEdit+, representing
the systems development strategy, although there are elements of
other research questions and strategies present.

S
O E

T The fourth paper, Application of Repository Technology and
Concepts to a MetaCASE Environment, describes how MetaEdit+
supports simultaneous multi-user access for several modellers and
meta-modellers. It takes a novel view of the environment by
considering the database and MetaEngine as forming a repository
analogous to standard generic commercial (business) repositories:
MetaEdit+ can thus be viewed both as using and forming a
repository. A particular emphasis is on the support for concurrency
provided by a locking scheme abstracted away from tools into the
MetaEngine, again aiding the integration of multiple tools. Whilst the
main strategy is clearly systems development, the paper includes a
measure of experimentation by evaluating MetaEdit+’s repository
functionality according to Bernstein’s criteria, and its support for
collaborative work according to the criteria of Vessey and
Sravanapudi. The development of a new high-concurrency
updatable collection could further be regarded as theory building.

58

S
O E

T The fifth paper, A Matrix Editor for a MetaCASE Environment, goes
on to show how one particular tool was added to the MetaEdit+
environment. It describes the requirements analysis, high-level and
user-interface design of the new matrix manipulation tool. The paper
shows how the matrix editor works as a tool, and how it is integrated
into the multiple tool support of MetaEdit+: this also provides some
verification of the suitability of GOPRR for multiple representation
paradigms, and the success of the MetaEngine approach to adding
new tools. In addition to the paper’s main strategy of systems
development, some preliminary hypotheses are presented on the
usability of matrices for metamodelling as well as modelling.

S
O E

T The sixth and final paper, Evaluating Method Engineer Performance:
An Error Classification and Preliminary Empirical Study, extends the
need for multiple tools to metamodelling. It investigates the
evaluation of method engineer’s performance, extending Batra’s
theory of analysing database models and applying it to
metamodelling to develop a classification to identify and quantify
errors. The classification is used in an experiment that compares the
performance of method engineers using a graphical diagram or
matrix-based tool to design metamodels. It thus also addresses the
need for better support for method engineering by showing that
different tools are better for different parts of the metamodelling
process.

From the icons by the side of each paper, showing the main and subsidiary
research strategies used and the relations between them, it is clear that the
research has followed a multi-methodological systems development approach
as advocated in (Nun91), both in terms of the phases of the research and the use
of the different strategies to support, motivate and build on each other.

All four research strategies have been used, with an emphasis in this thesis
on systems development and theory building, reflecting my role in the wider
MetaPHOR project. This reflects the progress of the research through the five
phases of the framework: the multi-user version of MetaEdit+ was finished at
the end of 1996, and thus observation is only just becoming possible. Similarly,
to date there has been only one course on metamodelling at this university,
providing a suitable research setting and subjects with which to study
metamodelling experimentally. Experimentation and observation will thus
form dominant strategies in research in the near future, as the current cycle of
incremental systems development is concluded and the next begins.

59

6 Summary of the thesis

In this section we list the six papers that make up the body of the thesis, along
with brief descriptions of the problems addressed and results of each. The
publication details of the papers and authors are listed for each paper, and the
division of work among co-authors for the group articles is described at the end
of the section.

Note that the order is logical rather than chronological. In this respect, the
positioning of the article on the Matrix Editor is somewhat difficult: the
architecture into which the Matrix Editor fits is finalised and described in
papers published later, and this article was written before the Matrix Editor was
completed. However, it still seems more logical to position it after the
description of MetaEdit+ as a whole, and before the empirical investigation of
some claims made in it about the usability of the matrix format for
metamodelling.

6.1 What’s in a Relationship?
On Distinguishing Property Holding and Object Binding

Proceedings, 3rd Conference on Information Systems Concepts (ISCO3)
Steven Kelly

Research problems and methodology

Current data models, or meta-metamodels, used for CASE and metaCASE are
not powerful enough to describe and support the concepts needed for modern
methods. In particular, many do not offer full support for n-ary relationships,
decomposition of objects with proper handling of interface relationships,
allowing reuse, polymorphism of metatypes, and modelling of methods such as
Data Flow Diagrams (Gan79), where relationship bindings are not fully
symmetrical. These deficiencies present a major barrier to the realisation of a
metaCASE environment allowing modelling of multiple, integrated methods,
multiple tools, and multiple users. Many of the problems in the data model are
concerned with the nature of the concept or metatype of relationship, and thus
the semantics and behaviour of relationships in different data models are
examined, to identify the source of the deficiencies and develop a better theory
and framework of relationships in CASE and metaCASE.

Research results

The paper identifies fundamental problems in the applicability of the currently
used underlying data models for CASE and metaCASE. The concept of
relationship is seen to have been overloaded by the inclusion of property
holding in addition to its behaviour of binding objects together. The negative
consequences of this are demonstrated: the underlying similarities of all

60

property-holders (objects, relationships and roles) are obscured; the role and
relationship type definitions are too tightly bound to each other and object
types, preventing their reuse; binding information and handling is distributed
and partially duplicated in each of these metatypes, leading to inefficiency and
dangers of inconsistency; in a multi-user environment, duplication of
information increases the extent of locking requirements, reducing the
bandwidth of simultaneous work; modelling methods such as Data Flow
Diagrams (Gan79) requires the construction of dummy relationship types to
make up for the allocation of only one pair of roles and objects to each
relationship type.

A new model is presented which uses a separate construct, Binding, to
handle the actual linking of objects, whilst maintaining the concepts of
relationship and role to hold properties along the path of the binding. The
existing and new models are compared with respect to modelling accuracy and
comprehensibility, and to how they perform in multi-method, multi-tool, multi-
user situations, and the new model shown to be a significant improvement. The
place and effectiveness of bindings in the GOPRR data model is shown, and the
possibilities for their use to solve complicated problems of metatype
polymorphism in methods such as NIAM are demonstrated.

6.2 MetaEdit+: A Fully Configurable Multi-User and Multi-Tool CASE and
CAME Environment

Proceedings of 8th International Conference on Advanced Information
Systems Engineering, CAiSE’96
Steven Kelly, Kalle Lyytinen and Matti Rossi

Research problems and methodology

The paper addresses the problems of supporting software engineering in-the-
large, by many, and over time. It examines the history and current state of
CASE technology, and identifies major deficiencies in the support for
integrating methods, alternative representation paradigms, and multiple users.
A further serious problem is the rigid method and process built into the tool.
MetaCASE tools have offered some solutions, but their metamodelling
languages have been hard to use and lacked the power to adequately describe
methods. The paper seeks to advance current theory with the development of
the GOPRR metamodelling language, and describes the architecture of a CASE
and metaCASE environment, MetaEdit+, and its CAME tools that allow
metamodelling with GOPRR via an easy form-based GUI.

Research results

GOPRR extends the existing OPRR meta-metamodel, itself a kind of extended
ER model, with a concept of Graph, mapping to the definition of e.g. Data Flow

61

Diagrams. This allows the representation of multiple methods and models
while still maintaining each as an identifiable whole. In addition, GOPRR is
object-oriented, providing the power of inheritance and polymorphism for the
metamodeller. The ability to define links other than relationships between
model components is identified as important, and several inter-graph link types
are identified, including explosion, decomposition, component reuse and
property sharing. The first two have been known for some time, but their exact
definitions and the distinction between them are here made more precise:
explosion is a simpler more navigational link between something in a graph
and another graph, whereas decomposition represents the internal structure of
an object, and also its interface relationships, allowing the decomposition graph
to be reused in a similar manner to components in CAD or computer-aided chip
design.

Component reuse is introduced as the ability to include a component from
one graph in another graph, even another graph from a different method,
providing that the type of the component is legal in the second method. This is
made possible by the ability to reuse type-level components when defining the
metamodel of the graph. Property sharing is the complementary ability to
define that two individual components both have the same property in a certain
of their property slots. This means that if the value is changed in one
component, the change will also be visible in the other component. Property
values can be constrained by rules, which are defined in a simple format similar
to Backus-Naur. Finally, the paper proposes and shows a metamodelling
paradigm that uses the GOPRR concept of Graph to model method diagrams
and produce type level graphs, and allows the inclusion of graphs within other
graphs as complex objects. This is demonstrated on the DFD method (Gan79).

The metamodelling tools of MetaEdit+ are presented, showing how their
user-friendly form-based interface allows much faster metamodelling than has
previously been possible. The support of GOPRR for evolution of metamodels
with corresponding instantaneous updates of models is described: a major
feature for method engineering, not present in any other environment.

6.3 MetaEdit+: CASE Functionality to Support Production, Coordination
and Organizational Control and Innovation

Submitted to ACM Transactions on Software Engineering and
Methodology
Steven Kelly, Kalle Lyytinen
Hui Liu, Pentti Marttiin, Harri Oinas-Kukkonen, Matti Rossi, Juha-Pekka
Tolvanen

Research problems and methodology

Current CASE tools support a single fixed method at a time and a single
representation paradigm (graphical). In practice, organisations often use a mix
of existing methods, change methods as they take them into use, and different

62

users require different views on the same data at different times. This paper
examines the needs for CASE functionality to support the production, co-
ordination, organisational and learning/innovation functions which CASE
should provide in organisations. It describes how MetaEdit+ supports these
functions and features of organisational method use with a set of tools
integrated by a common MetaEngine.

Research results

The paper describes the implemented MetaEdit+ system, in particular its
architecture, MetaEngine, and various modelling tools. The architecture is
based on principles of conceptual modeling, layered data base architectures,
and object orientation, providing three kinds of independence that are vital to
the success of the environment as a whole: data independence, representation
independence, and level independence. Data independence separates the basic
data required by the various tools from its storage and locking in the database;
representation independence separates the conceptual data and its behaviour
shared by all CASE editors from the representational (e.g. positional) data they
need in their representational paradigm; level independence means that the
environment follows the environment follows a symmetrical approach in its
treatment of models and metamodels. Together, these abstract behaviour away
from the tools into the MetaEngine, producing consistent behaviour across
tools, and significantly reducing the work required to implement new tools. In
addition, the MetaEngine automatically offers a large set of default behaviour
that tools can obtain by simply subscribing to it. The MetaEngine is responsible
for all operations on conceptual data, while each tool is only responsible for
operations on its own representational data.

The various tools of MetaEdit+: Diagram, Matrix and Table Editors, Type
and Graph Browsers, Hypertext subsystem, Design Rationale tool and Query
Editor are described, and it is shown how together these form an integrated
environment to support the functions and needs described above.

6.4 Application of Repository Technology and Concepts to a MetaCASE
Environment

To be submitted to ACM Transactions on Software Engineering and
Methodology
Steven Kelly

Research problems and methodology

MetaCASE tools have been hampered by their use of file-based data storage
rather than a true repository, leading to lack of integration between methods,
and by their support for only single users. This paper examines the user
requirements for multi-user CASE and metaCASE, and the solutions necessary

63

to provide such support. It assesses the MetaEdit+ metaCASE environment as a
repository for CASE data, following Bernstein’s requirements for generic
repositories (Ber96). It describes the multi-user support developed in
MetaEdit+, in particular the locking strategies used, and a new data structure
that was developed. It then assesses MetaEdit+’s support for multiple users
according to the criteria used by Vessey and Sravanapudi (Ves95) in their
comparison of several CASE tools support for collaboration.

Research results

MetaCASE tools can be usefully viewed as a repository for CASE data, and
MetaEdit+ considered thus fulfils almost all of the criteria put forward by
Bernstein for an ideal repository. Particular strengths include its support for
multiple tools, its flexibility in supporting multiple methods and changes in
methods on the fly, and support for reuse. Weaknesses were in the support for
versioning and configuration management; however, Bernstein views these as
the main mechanism for allowing simultaneous multi-user access, and this need
is fulfilled in MetaEdit+ by a different mechanism: locking.

The locking system in MetaEdit+ is abstracted out of the tools into the
MetaEngine, providing the locking behaviour for conceptual information and a
generic set of locking functions for representational information. Simply
marking menu items with the level of locking they require suffices to invoke
those generic functions: if the locks are not present, the item is disabled. The
locking strategy uses only write locks: no read locks are used, as only mild
semantic inconsistency occurs if changes are made on the basis of old read
information. This follows the same pattern of work that developers are
accustomed to from before multi-user CASE: you work on the basis of the last
released version. This use of only write locks coupled with the fine granularity
of data (down to individual properties) allows a high degree of concurrency,
solving the problems often found when trying to use standard database
transactions for CASE.

A special set of locking behaviour is provided for metamodels, allowing
the system administrator to choose whether metamodelling should only be
allowed when no other users are logged in, whether only one metamodeller
should be allowed but many simultaneous modellers, or whether there may be
many simultaneous metamodellers and modellers. MetaEdit+ is thus the first
tool to support metamodelling simultaneously with modelling, and multiple
simultaneous metamodellers.

We describe a new collection data type, which was created to meet the
needs of projects, i.e. sets of graphs. When a project is created, its set of graphs
is small, and growing fast as users add many new graphs. As it gets older, the
growth slows, and the normal maximum size is less than 100. The traditional
solution to collections accessed by multiple users, B-trees, is highly inefficient at
small sizes, allowing only a very low level of concurrent updates. The new
collection type allows a high level of concurrent updates also when small, and
behaves externally to tools that use it as any other normal collection.

64

Finally, MetaEdit+ is briefly assessed in its support for collaborative
CASE. The results indicate an overall score higher than other tools assessed,
even though MetaEdit+ supports metaCASE, which makes multi-user
functionality more difficult.

6.5 A Matrix Editor for a MetaCASE Environment

Journal of Information and Software Technology, 36 (6) 1994
Steven Kelly

Research problems and methodology

Research in metaCASE or CASE shells has largely focused on supporting
methods by allowing the definition of the concepts and representational
symbols used in their diagrams. Little interest has been shown in environments
supporting representational paradigms other than diagrams, such as matrices
or (hyper-)text. The matrix in particular is often a better format for business
information systems, metamodelling, and automatic algorithms for
decomposing a system. This paper studies the requirements for such an editor,
looking at methods that use matrices, previous use of matrices in CASE, and the
metaCASE environment into which the matrix editor will be incorporated.
These requirements are then used to motivate a high-level and user-interface
design for the matrix editor, and this and the principles are demonstrated
through several small examples.

Research results

The uses of matrices in CASE and metaCASE are analysed into three categories:
methods that use matrices as their main representation paradigm, those that use
mainly diagrams, but for which an alternative matrix representation exists, and
those for which a matrix representation has not yet been used, but which could
benefit from this alternative view. In the former two categories are both older
structured methods and newer methods, especially business process
engineering methods, where the matrix format helps in the division of a large
number of processes and units into cohesive groups. In the last category, the
matrix format is shown to be useful for metamodelling, particularly for
showing the often complex rules concerning the legal bindings of relationship
and object types.

The matrix is seen to be a useful format as it allows the display of a large
amount of information which can be quickly and easily manipulated. In
particular, it provides a more relationship-centred view of the data in a design
graph, contrasting with the object-centred view of graphical diagrams. For
example, adding a relationship in a matrix requires the selection of only one
point, the intersection of the row and column of the objects in the relationship.
The ease of automatic generation and layout of matrices means little extra user

65

work is needed to benefit from them: automatic layout of a diagram from a
matrix is more complicated. Different automatic algorithms for grouping and
arranging axis items can be provided, e.g. diagonalisation, affinity analysis and
transitive closure.

The user interface described builds on existing similar paradigms such as
spreadsheets, extending it with the possibility of hierarchical axes. The display
of the elements in the matrix reflects their type definitions in the wider
metaCASE environment, showing identifying properties, the graphical symbol
defined for that type, single characters (e.g. CRUD matrices) or just an X. As the
matrix editor is based on the GOPRR metametamodel, rather than any
particular method, its user interface is flexible, automatically configuring itself
to the method in use, whilst allowing users to influence the displayed
information.

6.6 Evaluating Method Engineer Performance:
An Error Classification and Preliminary Empirical Study

First version published in Proceedings of 2nd CAiSE / IFIP8.1
International Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design.
Submitted as an invited paper (as one of the five best papers from the
workshop) to The Electronic Journal of Information Systems Evaluation.
Steven Kelly and Matti Rossi

Research problems and methodology

Various ways of representing metamodels have been put forward, including
textual, graphical and matrix. These different paradigms may have their own
effects on how easily and well users can model methods. However, no
comparisons of their performance have been performed, and indeed no way of
comparing performance of metamodellers has been described. We extend
Batra’s classification of errors in data modelling to cover metamodelling, and
use it to measure the performance of a group of metamodellers using either
diagrams or matrices.

Research results

Batra’s classification of different facets of database modelling forms a good
basis, and we are able to modify and extend it to apply well to metamodelling.
Our hypothesis was that the matrix users would perform better on modelling
simple relationships, as the matrix format appears clearer and more compact,
but in other facets of metamodelling diagrams would be easier to use, as users
were generally already more familiar with the diagram format.

From a pilot group of ten users, we obtained results that appear to
support the first half of the hypothesis, that matrices were better for simple

66

relationships, but the second half appeared unjustified: in the other facets
overall there was only an insignificant benefit from using diagrams, with little
differences excepting one facet whose sharp difference was ruled out because
modelling of that facet was identical in both paradigms.

Thus the matrix format would appear to be useful for metamodelling, and
there is probably a need for multiple formats, so that users can switch formats
to use the best format for each facet. MetaEdit+ supports such switching of
formats whilst modelling. The tentative results from this pilot study confirm the
usefulness of the classification and the applicability of this experiment set-up.

6.7 About the joint articles

My contribution in the second paper, MetaEdit+: A Fully Configurable Multi-
User and Multi-Tool CASE and CAME Environment, includes the whole of
Sections 3 (architecture) and 4 (GOPRR). In addition, I was responsible for some
of the functionality described in Section 5 (metamodelling tools), and for
bringing together the paper as a whole.

In the third paper, MetaEdit+: CASE Functionality to Support Production,
Coordination and Organizational Control and Innovation, I was responsible for
Sections 3 and 4 (architecture and MetaEngine), and for bringing together the
paper as a whole. I was also responsible for the Matrix Editor and for the more
advanced stages of development of the Diagram Editor. Whilst the tools
themselves were implemented by the various authors, and each implementer
initially submitted some text on their tool, Sections 5 to 7 are almost entirely my
own text, bringing together the descriptions of the tools and their functions in
the wider environment. The introductory sections and conclusions were formed
largely from Kalle Lyytinen’s ideas and original text.

In the sixth paper, Evaluating Method Engineer Performance: An Error
Classification and Preliminary Empirical Study, the division of work was
largely even throughout. We collectively built the framework of the error
classification, but the analysis and interpretation of the results was almost
entirely my work.

7 Conclusion

7.1 Contribution of the thesis

The main contribution of this thesis lies in the development of metaCASE
principles and solutions to better address the problems of CASE, and move
towards CAME. In particular, we identify the current problems of CASE and
metaCASE and their causes, and propose four main areas addressed in this
thesis for developments of metaCASE: meta-metamodel extensions and
improvements, multiple representational paradigm support, engineering and

67

integration of multiple methods, and multi-user support. Each of these areas is
addressed in one or more papers, providing a deeper examination of the
problem, directions for an overall solution, components of a specific solution,
and examples of their applicability.

• The concept of relationship is analysed and honed for use in metaCASE by
separating the property-holding and object-binding aspects. This new
approach extends the GOPRR data model making it better able to support
more complicated multiple integrated methods and multiple users.

• The concepts necessary for linking between methods are examined and
refined, and a graph-based paradigm designed for incremental method
engineering and metamodelling of multiple, integrated methods.

• GOPRR is made object-oriented, giving the power of inheritance,
instantiation, abstraction, polymorphism and reuse to users to enhance the
quality and speed of method engineering and software engineering.

• These extensions in GOPRR provide significant advances in the breadth and
depth of coverage of methods which can be metamodelled without having to
resort to programming or logic languages.

• MetaEdit+ is the first metaCASE tool where metamodelling and modelling
take place within the same environment, with instant automatic updates of
models to appropriately reflect metamodel changes.

• An object-oriented strategy is presented for collecting the central
functionality of a metaCASE environment into a MetaEngine, including the
GOPRR concepts and their behaviour, and other generic behaviour, dialogs
etc. used in all tools. This provides automatic locking, type palette toolbar,
hypertext functionality, and reuse functionality seamlessly in all editors, with
virtually no coding in the editors. It also significantly improves consistency
between the look and behaviour of the tools. The implementation of this
central functionality in the MetaEdit+ MetaEngine allows quick creation and
smooth integration of new editors, including the Matrix Editor described
below.

• The central functionality of the MetaEdit+ environment is shown to be
analogous to a repository and to perform well when evaluated as a
repository. The multi-user support built appears to exceed that of other
existing CASE tools examined. MetaEdit+ is the first environment to allow
simultaneous metamodelling and modelling, and the first to allow multiple
simultaneous metamodellers.

• A set of automatic locking strategies are defined that enable MetaEdit+ to
offer a high level of concurrency whilst guaranteeing consistency. A new
collection data structure is developed that allows high concurrency of
updates even when small, improving on B-tree performance.

• A matrix editor is designed and integrated to function in parallel with
existing diagram and other editors in a multi-tool metaCASE environment,

68

providing representational independence — the ability to view the same
conceptual data in several representational paradigms.

• A classification of metamodelling errors is developed, along with a
quantification which allows empirical evaluation of different metamodelling
tools, users etc.

• The applicability of the matrix format for metamodelling as well as
modelling is demonstrated by an experiment, which indicates the need to use
different representational paradigms and tools to develop different aspects of
the same metamodel.

All of these solutions have been implemented in the construction of the
MetaEdit+ metaCASE environment, following the research methodology of
systems development. This environment has been made available commercially
via MetaCase Consulting since the end of 1996 (the single user version was
released a year earlier), with the number of licenses sold well into three figures.
MetaEdit+ thus represents a fully working and integrated product, not just a
research prototype.

Perhaps the best way to summarise the contribution is via the research
methodology. This thesis fulfils the five criteria for successful application of the
methodology given in (Nun91, p.101, quoted here on p. 55). A lot has been
learned during the development of MetaEdit+, and these theories, architectures
and observations have been generalised and made available to other
researchers via the published papers. The end result, MetaEdit+ itself, is
available as a full product, which in the first place can have an immediate,
concrete beneficial effect on the systems development process, and in the
second place provide a valuable source both for testing and experimentation by
researchers, and for observations on metaCASE in use in the real world. Such
observations have been largely impossible before, because of the lack of usable
tools. MetaEdit+ provides a solution by filling the gap between the unfinished
research prototypes that are too unstable and only support part of the necessary
functionality, and the commercial tools that are too hard to use, requiring
textual programming to metamodel.

7.2 Directions for further research

MetaEdit+ provides an environment in which much future experimentation
and observational research can be carried out. In particular, experiments should
be carried out on the applicability of different paradigms of metamodelling:
text-language based, graphical, matrix-based, form-based and example-based.
These should be examined with respect to their readability, conciseness, and
accuracy, and the process of metamodel creation in the different paradigms
should be observed.

Similarly, the use of the matrix editor for different modelling tasks should
be observed and compared with that of other representational paradigms such
as diagrams and tables. The ways in which multiple users utilise data in a large
project using integrated methods is also an area of interest.

69

Taking a broader approach, it would be instructive to perform a case
study of the use of MetaEdit+ in a large organisation. This would provide a
valuable source of information on metaCASE benefits on both the
metamodelling and modelling levels. One leading telecommunications
organisation, which uses MetaEdit+ for a project spread over several sites in
Finland, Denmark, Germany and the United States, forms a potential candidate,
and initial approaches have already been made.

These research strategies of experimentation and observation will form the
conclusion of the current cycle of systems development, and prepare the way
for the next. In terms of systems development, there are two main extensions to
the current MetaEdit+ that are significant both in research terms and also from
the feedback from existing users.

Firstly, an editor should be added for the time-based ‘fence’ diagrams of
e.g. OMT and the Unified Modelling Language. These diagrams cannot
properly be drawn with the existing Diagram Editor, and the concepts of time
and spacial order present interesting questions about the division of
information between conceptual and representational data. Conceptually the
diagrams seem to provide no problems for GOPRR, but representations would
rely on properties in a new way: to provide spatial information for objects
rather than just text elements.

Secondly, a facility for importing and exporting models should be added:
currently MetaEdit+ only supports this for metamodels. Whilst it is usually
preferable to have all users accessing the same repository, rather than manually
importing and exporting, there are situations where import and export are
needed. This would require solution of several notable problems, not least the
question of how much to export: how far should object reuse and property
sharing links be followed? The problem is akin to that of versioning complex
objects, to which no clear satisfactory general solution exists. The solution in
MetaEdit+ would thus attempt to add an extension above the GOPRR meta-
metamodel that would provide for version and configuration management, in
addition to import and export. The tool support and functionality for these
improvements could also probably be largely combined, following the
MetaEngine approach used elsewhere in MetaEdit+.

A further piece of research would be an impartial in-depth comparison of
the three leading metaCASE environments, their strengths and weaknesses in
both metamodelling and modelling. The present author would however hope
to be ineligible to carry out this particular piece of research, on grounds of
partiality to one of the environments chosen.

70

References

Aae91 Aaen, Ivan, Carsten Sørensen, “A CASE of Great Expectations,”
Scandinavian Journal of Information Systems 3(1) (1991) pp.3–23.

Aae92a Aaen, Ivan, Aila Siltanen, Carsten Sørensen and Veli-Pekka
Tahvanainen, “A Tale of Two Countries: CASE Experiences and
Expectations,” in The Impact of Computer Supported Technologies on
Information Systems Development, K. E. Kendall, K. Lyytinen and J. I.
DeGross (Ed.), North-Holland, Amsterdam (1992).

Aae92b Aaen, Ivan, “CASE Tool Bootstrapping — how little strokes fell great
oaks,” in Next Generation CASE Tools, K. Lyytinen and V.-P.
Tahvanainen (Ed.), IOS Press, Amsterdam, Netherlands (1992).

Aal93 Aalto, J.-M., “Experiences on Applying OMT to Large Scale Systems,”
in Proceedings of the Seminar on Conceptual Modelling and Object-Oriented
Programming, A. Lehtola and J. Jokiniemi (Ed.), Finnish Artificial
Intelligence Society (1993).

Ald91 Alderson, Albert, “Meta-CASE Technology,” pp. 81-91 in Software
Development Environments and CASE Technology, Proceedings of European
Symposium, Königswinter, June 17-19, A. Endres and H. Weber (Ed.) No.
509, Springer-Verlag, Berlin (1991).

Alf77 Alford, M., “A Requirements Engineering Methodology for Real Time
Processing Requirements,” IEEE Transactions on Software Engineering
3(1) (1977) pp.60–69.

Amu87 Amundsen, B., B. Christoffersen, “Can Today's Design Tools Support an
Integrated Design Method?,” Norwegian Institute of Technology,
Trondheim, Norway (1987).

Aur88 Auramäki, E., M. Leppänen and V. Savolainen, “Universal Framework
for Information Activities,” DATA BASE (Winter 1988) pp.11–20.

Avi88 Avison, D. E., G. Fitzgerald, “Information systems development current
themes and future directions,” Information and Software Technology
30(8) (1988) pp.458–466.

Ban91 Banker, R. D., R. J. Kauffman, “Reuse and productivity in integrated
Computer-Aided Software Engineering: An empirical study,” MIS
Quarterly 15(3) (1991) pp.375–402.

Ber89 Bergsten, Per, Janis Bubenko jr., Roland Dahl, Mats Gustafsson and
Lars-Åke Johansson, “RAMATIC — A CASE Shell for Implementation of
Specific CASE Tools,” SISU, Gothenburg (1989).

Ber96 Bernstein, P. A., “The Repository: A Modern Vision,” Database
Programming & Design 9(12) (1996) pp.28–35.

Boo91 Booch, G., “Object-Oriented Design With Applications,” Benjamin /
Cummings, Redwood City CA (1991).

Boo97 Booch, G., J. Rumbaugh and I. Jacobson, “Unified Modeling Language
v1.0,” Proposal to OMG, Rational Software, available at
http://www.rational.com, Santa Clara, US (1997).

71

Bos94 Bosua, Rachelle, Sjaak Brinkkemper, “CASE Tool Integration: A State
of the Art Review,” in Proceedings of the 5th Workshop on the Next
Generation of CASE Tools, B. Theodoulidis (Ed.), Universiteit Twente,
Enschede, the Netherlands (1994).

Bri89 Brinkkemper, S., M. de Lange, R. Looman and F. H. G. C. van der
Steen, “On the Derivation of Method Companionship by Meta-
Modelling,” in Third International Workshop on Computer-Aided Software
Engineering, CASE'89, J. Jenkins (Ed.), Imperial College, London, UK
(1989).

Bri90 Brinkkemper, Sjaak, “Formalisation of Information Systems Modelling,”
Thesis Publishers, Amsterdam (1990).

Bri93 Brinkkemper, S., “Integrating diagrams in CASE tools through modelling
transparency,” Information and Software Technology 35(2) (1993)
pp.100–105.

Bri95 Brinkkemper, S., R. Engmann, J. Kreuk and M. van Loon, “Tools for
Information System Design,” Course material: Maestro II manual, DMG,
Dept. of Computer Science, University of Twente (1995).

Bro82 Brooks, F., “the Mythical Man Month: Essays on Software Engineering,”
Addison-Wesley, Reading, Mass, USA (1982).

Bub71 Bubenko, J. A., B. Langefors and A. Sølvberg, “Computer-Aided
Information Systems Analysis and Design,” Studentlitteratur, Nordforsk,
Lund (1971).

Bub88 Bubenko, J. A., “A Method Engineering Approach to Information Systems
Development,” the proceedings of the IFIP WG8.1 Working Conference
on Information Systems Development Process (1988) pp.167–186.

Bub92 Bubenko, J. A., B. Wangler, “Research Directions in Conceptual
Specification Development,” in Conceptual Modelling, Databases and
CASE: An Integrated View of Information Systems Development, P.
Loucopoulos and R. Zicari (Ed.), New York (1992).

Cai75 Caine, S. H., E. K. Gordon, “PDL — A tool for software design,” in
Proceedings of the National Computer Conference, AFIPS Press (1975).

CDI91 CDIF, “CASE Data Interchange Format Interim Standards vol. 1-3,”
Electronic Industries Association Engineering Department (1991).

Cha86 Charette, R., “Software Engineering Environments, Concepts and
Technology,” McGraw-Hill, New York, USA (1986).

Cha96 Chau, P. Y. K., “An empirical investigation on factors affecting the
acceptance of CASE by systems developers,” Information & Management
30(6) (1996) pp.269–280.

Che76 Chen, P. P., “The Entity-Relationship Model: Toward a Unified View of
Data,” ACM Transactions on Database Systems 1(1) (1976) pp.9–36.

Che89 Chen, Minder, Jay F. Nunamaker Jr., “METAPLEX: An integrated
environment for organization and information systems development,”
pp. 141–151 in Proceedings of the Tenth International Conference on
Information Systems, December 4–6, 1989, Boston, Massachusetts, J. I.
DeGross, J. C. Henderson, and B. R. Konsynski (Ed.), ACM Press
(1989).

72

Chi88 Chikofsky, E. J., B. L. Rubinstein, “CASE: reliability engineering for
information systems,” IEEE Software (March 1988) pp.11–16.

Fou87a Arthur Andersen Consulting, “Foundation-Method/1: Information
Planning, Version 8.0,” Arthur Andersen, Chicago (1987).

Fou87b Arthur Andersen Consulting, “Foundation-Method/1: Documentation,
Version 8.0,” Arthur Andersen, Chicago (1987).

Exc87 Index Technology Corporation, “Excelerator Reference Guide,” Index
Technology Corporation, Cambridge, USA (1987).

Cro94 Cronholm, S., G. Goldkuhl, “Meanings and motives of method
customisation in CASE environments — observations and
categorizations from an empirical study,” in Proceeding of the fifth
workshop on the next generation of CASE tools, B. Theodoulidis (Ed.),
University of Twente, Twente (1994).

Cyb92 Cybulski, Jacob L., Karl Reed, “A Hypertext-Based Software Engineering
Environment,” IEEE Software (March 1992) pp.62–68.

Dav90 Davenport, T. H., J. E. Short, “The New Industrial Engineering:
Information Technology and Business Process Redesign,” Sloan
Management Review (Summer 1990) pp.11–26.

Ebe97 Ebert, J., R. Süttenbach and I. Uhe, “Meta-CASE in Practice: a Case for
KOGGE,” pp. 203–216 in Proceedings of CAiSE '97, Barcelona, Catalonia,
Spain, June 16–20, A. Olivé and J. A. Pastor (Ed.) Vol. 1250, Springer,
Berlin (1997).

Emm97 Emmerich, W., J. Arlow, J. Madec and M. Phoenix, “Tool Construction
for the British Airways SEE with the O2 ODBMS,” Theory and Practice of
Object Systems 3(3) (1997) pp.(to appear).

Ern93 Ernst and Young, “Automated Methods Environment,” NAVIGATOR
system series, release 2.0, Ernst & Young (1993).

Gan79 Gane, C., T. Sarson, “Structured Systems Analysis: Tools and Techniques,”
Prentice Hall, Englewood Cliffs, NJ (1979).

Gol93 Goldkuhl, Göran, Stefan Cronholm, “Customizable CASE Environments:
A Framework for Design and Evaluation,” Linköping University, Sweden
(1993).

Gol90 Goldstein, Reuven, “Methodologies and CASE Tools — The Missing Link
(a metaCASE model for designing and applying methodologies),” CASE '90,
Position paper (1990).

GOO95 GOODSTEP_Project, “The GOODSTEP Project Final Report,” ESPRIT
Project 6115, http://www.dbis.informatik.uni-
frankfurt.de/REPORTS/GOODSTEP/goodstep.html, University of
Frankfurt, Germany (1995).

Gru95 Grundy, J. C., J. R. Venable, “Providing Integrated Support for
Multiple Development Notations,” pp. 255-268 in Proceedings of the 7th
International Conference on Advanced Information Systems Engineering,
CAISE'95, J. Iivari, K. Lyytinen and M. Rossi (Ed.), Springer-Verlag
(1995).

73

Gru96a Grundy, J. C., J. R. Venable, J. G. Hosking and W. B. Mugridge,
“Supporting Collaborative Work in Integrated Information Systems
Engineering Environments,” in Proceedings of the 7th Workshop on the
Next Generation of CASE Tools (NGCT'96), Crete, May 20-24 (1996).

Gru96b Grundy, J. C., J. R. Venable, “Towards an Integrated Environment for
Method Engineering,” pp. 45–62 in Method Engineering '96: IFIP WG
8.1/8.2 Working Conference on Principles of Method Construction and Tool
Support, Atlanta, August 26-28, S. Brinkkemper, K. Lyytinen and R.
Welke (Ed.), Chapman-Hall, London (1996).

Gul92 Gulla, Jon Atle, Odd Ivar Lindland and Geir Willumsen, “PPP: An
Integrated CASE Environment,” in Next Generation CASE Tools, K.
Lyytinen and V.-P. Tahvanainen (Ed.), IOS Press, Amsterdam, The
Netherlands (1992).

Hag95 Haggerty, James J., “Analysis/Design Tool,” Spinoff Magazine, NASA
Publication NP-217 20(1) (1995) p.95. Text available as
http://tommy.jsc.nasa.gov/~woodfill/SPACEED/SEHHTML/pg105
s95.html

Hah96 Hahn, E. von, “Meta-modeling in ConceptBase — Demonstrated on
FUSION,” Studienarbeit, TU München (1996).

Hai92 Haine, Peter, “Second Generation CASE: Can it be justified?,” in
CASE: Current Practice, Future Prospects, Kathy Spurr and Paul Layzell
(Ed.), Wiley, Chichester, UK (1992).

Han94 Hanna, Mary, “Repositories built on Kindergarten lesson: sharing eases
development,” Software Magazine 14(9) (1994) p.37. Text available as
http://www.it.rit.edu/~tdw/icsa710/refs/hanna.htm

Har93 Harmsen, F., S. Brinkkemper, “Computer Aided Method Engineering
based on existing Meta-CASE technology,” in Proceedings of the Fourth
Workshop on The Next Generation of CASE Tools, Sjaak Brinkkemper,
Frank Harmsen (Ed.), Univ. of Twente, Enschede, the Netherlands
(1993).

Har94 Harmsen, Frank, Sjaak Brinkkemper and Han Oei, “Situational
Method Engineering for Information System Project Approaches,” in
Methods and Associated Tools for the Information Systems Life Cycle (A-55),
A. A. Verrijn-Stuart and T. W. Olle (Ed.), Elsevier Science B.V. (North-
Holland) (1994).

Har97 Harmsen, A. F., “Situational Method Engineering,” Doctoral
dissertation, University of Twente, Moret Ernst & Young, Utrecht The
Netherlands (1997).

Hey93a Heym, M., “Methoden-Engineering Spezifikation und Integration von
Entwicklungsmethoden für Informationssysteme,” Ph.D. Dissertation,
Hochschule St.Gallen, Switzerland (1993).

Hey93b Heym, M., H. Österle, “Computer-aided methodology engineering,”
Information and Software Technology 35(6/7) (1993) pp.345–354.

Hid93 Hidding, Gezinus J., Gwendolyn M. Freund and Johan K. Joseph,
“Modeling Large Processes with Task Packages,” Workshop on Modeling
in the Large, AAAI Conference, Washington, D.C. (1993).

74

Hoc86 Hochstettler, William Henry, “A Model for Supporting Multiple Software
Engineering Methods in a Software Environment,” UMI Dissertation
Information Service, Ann Arbor, Michigan (1986).

Hof96 Hofstede, A. H. M. ter, T. F. Verhoef, “Meta-CASE: Is the game worth the
candle?,” Information Systems Journal 6(1) (1996) pp.41–68.

IBM90 IBM, “Repository Manager/MVS. General Information Version 1 Release 2,”
Technical report GC26-4608-1 (1990?).

IEE83 IEEE, “IEEE Standard Glossary of Software Engineering Terminology,” The
Institute of Electrical and Electronics Engineering, Inc. (1983).

IEE95 IEEE, “IEEE Standard for Developing Software Life Cycle Processes,” Ref.
1074.1-1995 (1995).

ISO89 ISO, “Information processing systems: Information Resource Dictionary
System (IRDS) Framework,” Draft International Standard ISO/IEC DIS
10027, International Organization for Standardization (1989).

ISO95 ISO, “Information technology — Software life cycle processes,” ISO/IEC
12207 (1995).

Jar96 Jarzabek, Stan, Tok Wang Ling, “Model-based support for business re-
engineering,” Information & Software Technology 38(5) (1996) pp.355–
374.

Kel94a Kelly, Steven, Veli-Pekka Tahvanainen, “Support for Incremental
Method Engineering and MetaCASE,” in Proceedings of the 5th
Workshop on the Next Generation of CASE Tools, B. Theodoulidis (Ed.),
Universiteit Twente, Enschede, the Netherlands (1994).

Kel94b Kelly, Steven, “A Matrix Editor for a MetaCASE Environment,”
Information and Software Technology 36(6) (1994) pp.361–371.

Kel95 Kelly, S., “What's in a Relationship: on distinguishing property
holding and object binding,” in Proceedings of 3rd International
Conference on Information Systems Concepts, ISCO 3, W. Hesse and E.
Falkenberg (Ed.), University of Marburg, Lahn, Germany (1995).

Keu97 Keuffel, W., “A Trio of Object-Modeling CASE Tools,” DBMS Online
10(5) (May 1997), http://www.dbmsmag.com/9705d08.html
(13.8.1997).

Kin94 Kinnunen, Kimmo, Mauri Leppänen, “O/A Matrix and a Technique
for Methodology Engineering,” in Proceedings of the Fourth International
Conference on Information Systems Development, J. Zupansis and S.
Wrycza (Ed.), Moderna Organizacija, Kranj, Slovenia (1994).

Kos97 Koskinen, M., P. Marttiin, “Process Support in MetaCASE:
Implementing the Conceptual Basis for Enactable Process Models in
MetaEdit+,” pp. 110–122 in Proceedings of Software Engineering
Environments, SEE'97, Gottbus, Germany, Jürgen Ebert and Claus
Lewerentz (Ed.), IEEE Computer Society Press, Los Alamitos, CA
(1997).

Kot84 Kottemann, J. E., B. R. Konsynski, “Dynamic Metasystems for
Information Systems Development,” in Proceedings of the Fifth
International Conference on Information Systems (1984).

75

Kum92 Kumar, Kuldeep, Richard J. Welke, “Methodology Engineering: A
Proposal for Situation Specific Methodology Construction,” in
Challenges and Strategies for Research in Systems Development,
Kottermann W. W. and Senn J. A. (Ed.), John Wiley & Sons,
Washington (1992).

Kus93 Kusters, R. J., G. M. Wijers, “On the Practical Use of CASE Tools:
Results of a survey,” in Proceedings of the 6th International Workshop on
Computer-Aided Software Engineering, CASE93, Hing-Yan Lee, Thomas
F. Reid and Stan Jarzabek (Ed.), IEEE Computer Society (1993).

Leh87 Lehman, M., W. Turski, “Essential Properties of IPSEs,” ACM SIGSOFT
Software Engineering Notes 12(1) (1987) pp.52–56.

Lep94 Leppänen, Mauri, “Metamodelling: Concept, Benefits and Pitfalls,” in
Proceedings of the Fourth International Conference on Information Systems
Development, J. Zupansis and S. Wrycza (Ed.), Moderna Organizacija,
Kranj, Slovenia (1994).

LeQ88 LeQuesne, P. N., “Individual and Organisational Factors and the Design of
IPSEs,” The Computer Journal 31(5) (1988) pp.391–397.

LeQ90 LeQuesne, P. N., “Individual and Organisational Factors in the Design of
Integrated Project Support Environments,” Ph.D. Thesis, London
Business School (1990).

Lin90 Lindgreen, P., “A Framework of Information Systems Concepts,” Interim
report of the IFIP WG8.1 Task Group FRISCO (1990).

Lo95 Lo, Pius, “Graphical Interface for CASE Environment Definitions in
MetaView,” Master's Thesis, University of Alberta, Canada (1995).

Lou92 Loucopoulos, P., B. Theodoulidis, “CASE — Methods and Support
Tools,” in Conceptual Modelling, Databases and CASE: An Integrated View
of Information Systems Development, P. Loucopoulos and R. Zicari (Ed.),
New York (1992).

Luc89 Luchner, Petra, Günter R. Koch and Franz Engelmann, “Glueing
CASE Tools Together in a Heterogeneous CASE Environment,” in
Proceedings of CASE 1989, Kista, Sweden, A. Qwerin and J. Bubenko jr.
(Ed.), SISU (1989).

Lyy87a Lyytinen, Kalle, “Different Perspectives on Information Systems: Problems
and Solutions,” ACM Computing Surveys 19(1) (1987) pp.5–46.

Lyy87b Lyytinen, Kalle, “A Taxonomic Perspective of Information Systems
Development: Theoretical Constructs and Recommendations,” in
Critical Issues in Information Systems Research, R. J. Boland Jr. and R. A.
Hirschheim (Ed.), John Wiley & Sons Ltd. (1987).

Lyy94 Lyytinen, K., P. Kerola, J. Kaipala, S. Kelly, J. Lehto, H. Liu, P.
Marttiin, H. Oinas-Kukkonen, J. Pirhonen, M. Rossi, K. Smolander, V.-
P. Tahvanainen and J.-P. Tolvanen, “MetaPHOR: Metamodelling,
Principles, Hypertext, Objects and Repositories,” Technical Report TR-7,
Department of Computer Science and Information Systems,
University of Jyväskylä, Finland (1994).

76

Lyy97 Lyytinen, K., J. Kaipala, S. Kelly, M. Koskinen, H. Liu, J. Luoma, P.
Marttiin, R. Pohjonen, H. Oinas-Kukkonen, M. Rossi, M. Somppi, V.-P.
Tahvanainen and J.-P. Tolvanen, “CAMSO: Computer Aided Modelling
Support for Organisations,” Technical Report TR-18, Department of
Computer Science and Information Systems, University of Jyväskylä,
Finland (1997).

Mar91 Marmolin, H., Y. Sundblad and B. Pehrson, “An Analysis of Design
and Collaboration in a Distributed Environment,” pp. 147–162 in
Proceedings of ECSCW '91 2nd European Conference on CSCW (1991).

Mar92 Marttiin, Pentti, Kalle Lyytinen, Matti Rossi, Veli-Pekka Tahvanainen
and Juha-Pekka Tolvanen, “Modeling requirements for future CASE:
issues and implementation considerations,” in Proceedings of The 13th
International Conference on Information Systems, Dec. 13–16, 1992, Dallas,
Texas (1992).

Mar93 Marttiin, Pentti, Matti Rossi, Veli-Pekka Tahvanainen and Kalle
Lyytinen, “A Comparative review of CASE shells: A preliminary framework
and research outcomes,” Information & Management 25 (1993) pp.11-31.

Mar94 Marttiin, Pentti, “Methodology engineering in CASE shells: design issues
and current practice,” Licentiate thesis, Technical Report TR-4, Dept. of
Computer Science and Information Systems, University of Jyväskylä,
Finland (1994).

Mar96 Marttiin, P., F. Harmsen and M. Rossi, “Evaluation of two CAME
environments using a functional framework: findings on Maestro
II/Decamerone and MetaEdit+,” pp. 63–86 in Method Engineering,
Principles of method construction and support, Proceedings of the Method
Engineering ‘96, Proceedings of IFIP 8.1/8.2 Working Conference on Method
Engineering, S. Brinkkemper, K. Lyytinen and R. Welke (Ed.),
Chapman-Hall, London (1996).

Mar97 Marttiin, P., “Can Process-Centred Environments Provide the
Customised Process Support Needed in Metacase? A Literature
Review,” pp. 165–180 in Proceedings of the First International Workshop
on the Many Facets of Process Engineering, 22-23.9.97, Gammarth, Tunisia,
G. Grosz (Ed.), Laboratoire PGL, Tunis (1997).

May39 Maynard, H. B., G. J. Stegemerten, “Operation Analysis,” McGraw-Hill,
New York (1939).

McC89 McClure, C., “CASE is Software Automation,” Prentice Hall, Englewood
Cliffs, NJ (1989).

Mer91 Merbeth, G., “Maestro II — the integrated CASE system from Softlab
(in German: Maestro II — das integrierte CASE-System von Softlab),”
in CASE Systeme und Werkzeuge, 3e Auflage, H. Balzert (Ed.), BI
Wissenschaftsverlag (1991).

Mor85 Morton, M. Scott, “The State of the Art of Research,” in The Information
Systems Research Challenge, F. W. McFarlan (Ed.), Harvard Business
School, Boston (1985).

Nij89 Nijssen, G. M., T. A. Halpin, “Conceptual Schema and Relational Database
Design: A fact oriented approach,” Prentice-Hall, Englewood Cliffs, NJ
(1989).

77

Nor89 Norman, R. J., J. F. Nunamaker Jr., “CASE Productivity Perceptions of
Software Engineering Professionals,” Communications of the ACM 32(9)
(1989) pp.1102–1108.

Nun91 Nunamaker, Jay F., Minder Chen and Titus D. M. Purdin, “Systems
Development in Information Systems Research,” Journal of Management
Information Systems 7(3) (1991) pp.89–106.

Nun92 Nunamaker, J. F., “Build and Learn, Evaluate and Learn,” Informatica —
The Journal of Management Information Systems Development 1(1)
(1992) pp.1–6.

Oei94 Oei, J. L. H., E. D. Falkenberg, “Harmonisation of information systems
modelling and specification techniques,” in Methods and Associated
Tools for the Information Systems Life Cycle, A. A. Verrijn-Stuart and T.
W. Olle (Ed.), Elsevier Science publishers (1994).

Oin97 Oinas-Kukkonen, H., “Improving the Functionality of Software Design
Environments By Using Hypertext,” Ph.D. Thesis, A 296, Dept. of
Information Processing Science, University of Oulu, Finland (1997).

Oll82 Olle, T. W., H. G. Sol and A. A. Verrijn-Stuart, “Proceedings of the IFIP
WG 8.1 Working Conference on Comparative Review of Information Systems
Design Methodologies,” North-Holland, Amsterdam (1982).

Oll86 Olle, T. W., H. G. Sol and A. A. Verrijn-Stuart, “Proceedings of the IFIP
WG 8.1 Working Conference on Comparative Review of Information Systems
Design Methodologies: Improving the Practice,” North-Holland,
Amsterdam (1986).

Oll92 Olle, T. W., “A Comparative Review of the ISO IRDS, the IBM
Repository and the ECMA PCTE as a Vehicle for CASE Tools,” in
CASE: Current Practice, Future Prospects, Kathy Spurr and Paul Layzell
(Ed.), Wiley (1992).

Pap94 Papachristos, S., W. A. Gray, “Federated CASE Environment System:
Towards the Realisation of Open CASE Environments,” in Proceedings
of the 5th Workshop on the Next Generation of CASE Tools, B.
Theodoulidis (Ed.), Universiteit Twente, Enschede, the Netherlands
(1994).

Par90 Parkinson, John, “Making CASE Work,” in CASE on Trial, K. Spurr
and P. Layzell (Ed.), John Wiley & Sons, Chichester (1990).

Pau93 Paulk, Mark C., Bill Curtis, Mary Beth Chrissis and Charles V. Weber,
“Capability Maturity Model, Version 1.1,” IEEE SOFTWARE 10(4) (1993)
pp.18–27.

Poc91 Pocock, John N., “VSF and its Relationship to Open Systems and
Standard Repositories,” in Software Development Environments and
CASE Technology, A. Endres, H. Weber (Ed.), Springer-Verlag, Berlin
(1991).

Rev95 Revault, N., H. A. Sahraoui, G. Blain and J.-F. Perrot, “A
Metamodeling Technique: The MetaGen system,” in TOOLS Europe'95
Proceedings, Prentice Hall (1995).

78

Ros92 Rossi, M., M. Gustafsson, K. Smolander, L.-Å. Johansson and K.
Lyytinen, “Metamodeling editor as a front end tool for a case-shell,”
pp. 547–567 in Advanced Information Systems Engineering, P.
Loucopoulos (Ed.), Springer Verlag, Berlin, Germany (1992).

Ros94a Rossi, M., J.-P. Tolvanen, “Metamodeling approach to method comparison:
A survey of a set of ISD methods,” Working Paper WP-34, Dept. of
Computer Science and Information Systems, University of Jyväskylä,
Finland (1994).

Ros94b Rossi, M., S. Brinkkemper, “Metrics in Method Engineering,” in
Proceedings of CAiSE'95, Iivari et al. (Eds), Lecture Notes in Computer
Science 932, Springer-Verlag, Berlin (1995).

Ros95 Rossi, M., “CAME Tools for MetaEdit,” Licenciate thesis, Technical
Report TR-9, Dept. of Computer Science and Information Systems,
University of Jyväskylä, Finland (1995).

Rum91 Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen,
“Object-Oriented Modeling and Design,” Prentice–Hall, Englewood
Cliffs, NJ, USA (1991).

Rup95 Rupnik-Miklic, E., J. Zupancic, “Experiences and expectations with CASE
technology — an example from Slovenia,” Information & Management
28(6) (1995) pp.377–391.

Rus94 Rust, Kees, personal communication on Westmount CASE tools
(1994).

Sae94 Saeki, Motoshi, Kuo Wenyin, “Specifying Software Specification &
Design Methods,” in CAiSE '94 Proceedings, Gerard Wijers, Sjaak
Brinkkemper and Tony Wasserman (Ed.), Springer-Verlag, Berlin
(1994).

Sav90 Savolainen, V., J. Geels and J. Niemeier, “SESAM, the HECTOR
Methods and Tools Database,” Fraunhofer Institute for Industrial
Engineering, Stuttgart (1990).

Sav93 Savolainen, Vesa, “Analysis of Decision Criteria for ISD Tool Selection,”
Systems Science 19(2) (1993).

Sil90 Siltanen, Aila, “The impact of CASE tools on IS management,” in
CASE on Trial, K. Spurr and P. Layzell (Ed.), John Wiley & Sons,
Chichester (1990).

Slo93 Slooten, Kees van, Sjaak Brinkkemper, “A Method Engineering
Approach to Information Systems Development,” in Procs. of the IFIP
WG 8.1 Working Conference on the Information Systems Development
Process, N. Prakash, C. Rolland, B. Pernici (Ed.), North-Holland,
Amsterdam (1993).

Smi88 Smith, J. B., S. F. Weiss, “Hypertext,” ACM Special Issue on Hypertext
31(7) (1988) pp.816–819.

Smo91a Smolander, Kari, Kalle Lyytinen, Veli-Pekka Tahvanainen and Pentti
Marttiin, “MetaEdit — A Flexible Graphical Environment for
Methodology Modelling,” in Advanced Information Systems Engineering,
Proceedings of the Third International Conference CAiSE'91, Trondheim,
Norway, May 1991, R. Andersen, J. A. Bubenko jr. and A. Solvberg
(Ed.), Springer-Verlag, Berlin (1991).

79

Smo91b Smolander, Kari, “OPRR: A Model for Modelling Systems
Development Methods,” in Next Generation CASE Tools, K. Lyytinen
and V.-P. Tahvanainen (Ed.), IOS Press, Amsterdam, the Netherlands
(1991).

Sor88 Sorenson, Paul G., Jean-Paul Tremblay and Andrew J. McAllister, “The
Metaview System for Many Specification Environments,” IEEE
SOFTWARE (March 1988) pp.30–38.

Ste93 Stegwee, Robert A., Ria M. C. van Waes, “Flexible CASE tools for
Information Systems Planning,” in Computer-Aided Software
Engineering — Issues and Trends for the 1990s and Beyond, T. Bergin
(Ed.), Idea Group Publishing (1993).

Sto93 Stobart, S. C., A. J. van Reeken, G. C. Low, J. J. M. Trienekens, J. O.
Jenkins, J. B. Thompson and D. R. Jeffery, “An Empirical Evaluation of
the Use of CASE Tools,” in Proceedings of the 6th International Workshop
on Computer-Aided Software Engineering, CASE93, Hing-Yan Lee,
Thomas F. Reid and Stan Jarzabek (Ed.), IEEE Computer Society
(1993).

Tag90 Tagg, B. S., “Implementing Tool Support for Box Structures,” IBM
Systems Journal 29(1) (1990).

Tah90 Tahvanainen, V.-P., K. Smolander, “An Annotated CASE Bibliography,”
ACM SIGSOFT Software Engineering Notes 15(1) (1990) pp.79–92.

Tai97 Taivalsaari, A., S. Vaaraniemi, “TDE: Supporting Geographically
Distributed Software Design with Shared, Collaborative Workspaces,”
pp. 389–408 in Proceedings of CAiSE '97, Barcelona, Catalonia, Spain, June
16–20, A. Olivé and J. A. Pastor (Ed.) Vol. 1250, Springer, Berlin (1997).

Tei77 Teichroew, Daniel, Ernest A. Hershey III, “PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems,” IEEE Transactions on Software Engineering 3(1)
(1977) pp.41–48.

Tei80 Teichroew, Daniel, Petar Macasovic, III Ernest A. Hershey and Yuzo
Yamamoto, “Application of the entity-relationship approach to
information processing systems modeling,” in Entity-Relationship
Approach to Systems Analysis and Design, P. P. Chen (Ed.), North-
Holland (1980).

Tho89 Thomas, Ian, “PCTE Interfaces Supporting Tools in Software-Engineering
Environments,” IEEE SOFTWARE (Nov. 15, 1989) pp.15–23.

Tol93 Tolvanen, J.-P., K. Lyytinen, “Flexible method adaptation in CASE
environments — The metamodeling approach,” Scandinavian Journal of
Information Systems 5(1) (1993) pp.51–77.

Tol94 Tolvanen, J.-P., “Methodology Engineering in CASE: Towards an
Incremental Approach,” Licentiate Thesis, TR-5, Dept. of Computer
Science and Information Systems, University of Jyväskylä, Finland
(1994).

Tol95 Tolvanen, J.-P., “Incremental Method Development for Business
Modelling: An Action Research Case Study,” pp. 79-98 in Proceedings
of the 6th Workshop on the Next Generation of CASE Tools, NGCT'95, G.
Grosz (Ed.), University of Paris 1, Paris (1995).

80

Tol96 Tolvanen, J.-P., M. Rossi and H. Liu, “Method Engineering: Current
research directions and implications for future research,” pp. 296–317
in Method Engineering, Principles of method construction and support,
Proceedings of the Method Engineering ‘96, Proceedings of IFIP 8.1/8.2
Working Conference on Method Engineering, S. Brinkkemper, K. Lyytinen
and R. Welke (Ed.), Chapman-Hall (1996).

Urw95 Urwiler, R., N. K. Ramarapu, R. B. Wilkes and M. N. Frolick,
“Computer-aided software engineering: The determinants of an effective
implementation strategy,” Information & Management 29(4) (1995)
pp.215–225.

Ves92 Vessey, I., S. L. Järvenpää and N. Tractinsky, “Evaluation of Vendor
Products: CASE Tools as Methdology Companions,” Communications of
the ACM 35(4) (1992) pp.90–105.

Ves95 Vessey, I., A. P. Sravanapudi, “CASE tools as collaborative support
technologies,” CACM 38(1) (1995) pp.83–95.

Was86 Wasserman, A. I., P. A. Pircher, “A Graphical, Extensible Integrated
Environment for Software Development,” Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments (December 1986) pp.131–142.

Wel83 Welke, R. J., “IS/DSS DBMS Support For Information Systems
Development,” DATA BASE MANAGEMENT (1983) pp.195–250.

Wel92 Welke, R. J., “The CASE Repository: More than another database
application,” in Challenges and Strategies for Research in Systems
Development, William W. Cotterman and James A. Senn (Eds.), Wiley,
Chichester UK (1992).

Wij91 Wijers, G. M., “Modelling Support in Information Systems Development,”
PhD Thesis, Thesis Publishers, Amsterdam (1991).

Wyn91 Wynekoop, J. L., S. A. Conger, “A review of computer aided software
engineering research methods,” Information Systems Research, IFIP
(1991), pp. 301–320.

You86 Yourdon, E., “Whatever Happened to Structured Analysis?,” Datamation
(June 1986) pp.133–138.

