
GOPRR Description
This material is included as Appendix 1 in Steven Kelly’s PhD dissertation. It is
copyright 1997 Steven Kelly. By reading this material, you agree that you will not use or
allow the information here to be used to make a CASE tool, metaCASE tool or similar,
for commercial gain.

In this appendix we will look at GOPRR’s background and principles (Section 1),
GOPRR’s concepts and their use (Section 2), a model of GOPRR (Section 3),
and the object-oriented features of GOPRR (Section 4).

Feel free to read just those sections that interest you!

1 Background and motivation

Since the early ER and binary models, a wide variety of so-called ‘data models’ have
sprung up. Most of these have aimed at modelling information to be stored as data in a
database, but the generality of many allows them also to be used for other purposes, such
as metamodelling. In addition, some have been built or modified specially for
metamodelling. GOPRR forms an example of such a model, being developed from
OPRR, itself a form of ER modified for metamodelling.

The history of GOPRR itself (after OPRR) can be divided into two phases,
reflecting the continuing development of its ideas. Both phases have been reported in the
literature as they have progressed, giving rise to a somewhat confused picture of what
exactly GOPRR is. The first phase consisted of ideas generated on the basis of OPRR
and MetaEdit Personal: what extra capabilities were required, in particular to support
method integration and the more complicated structures of the object oriented methods
that were being released then. During that phase GOPRR was strongly linked with the
process and agent metamodels, and also the representation, often to the extent that these
seemed part of GOPRR itself. The emphasis was largely on metamodelling, and the
GOPRR described was primarily a graphical metamodelling language. Within the
conceptual metametamodel, the main differences were in the modelling of complex
properties and graphs; overall, there were more concepts in GOPRR, and the role and
use of graph was weaker and less clear.

The second and current phase began in 1993, although the vagaries of publication
mean that some articles dated after this actually belong to the first phase. 1993 marks the
start of the actual development of MetaEdit+, and the requirements analysis, design and
implementation forced a crystallisation of the existing ideas, and also perhaps revealed
some areas where the model had become overly complex to little gain. This second phase
is characterised by GOPRR being for both the metamodel and model levels, and a clear
separation of process, agent and representational issues. Conversely, GOPRR became
more closely linked with its implementation in the MetaEngine of MetaEdit+. This gave
flesh in the form of actual operations to the bare bones of the conceptual data model.
Publications involving GOPRR during this phase have been free to choose any
representation, in keeping with the idea that GOPRR is a conceptual modelling language
distinct from any particular set of symbols or representational paradigm.

Whilst the development of GOPRR has seen it change and evolve, some things
have remained the same throughout. These can be viewed as the philosophy of GOPRR,

 2

which is perhaps different from that of many other metametamodels. As we discuss
below, GOPRR is intended to be easy to use, implemented in and thus supported by a
metaCASE environment, and to work the same for both metamodels and models. In
addition, although perhaps more a part of the implementation of GOPRR, two other
important guiding ideas have been object-orientation and reuse. As these are discussed in
the papers of this thesis (particularly Chapters 3 (Kel96) and 5), we will not go into
details here, but will concentrate on the other principles.

1.1 Ease of use

Firstly, GOPRR is intended to be easy and quick to use. This is of course a question of
degree: after a certain point, ease of use cannot be improved without sacrificing power.
However, most other metametamodels have concentrated on power rather than ease of
use, and whilst meaningful quantitative results would be difficult to obtain, our
experience shows that much can be done to improve ease of use with little or no sacrifice
in power. In any case, the commitment to ease of use is certainly a main part of the
philosophy behind GOPRR; it is not the place of this appendix to assess how well we
have succeeded.

1.2 Tool support

Secondly, GOPRR is designed to be implemented in a metaCASE environment. The vast
majority of metametamodels have never been implemented, nor been designed with
implementation in mind. Whilst the design of GOPRR has in no way taken an ad hoc
implementation-driven approach, implementation provides many important benefits.
Firstly, it forces the designer to consider the metametamodel thoroughly, and also from a
different perspective. Secondly, it allows testing of the metametamodel with real
methods, a procedure which takes enormous time with paper and pencil metametamodels
and methods. The testing is also more complete, because the resulting metamodels can
be used by normal system designers, who will be quick to spot problems, including
deviations from the method which have their roots in problems in the metametamodel.
Thirdly, it allows a far wider and more representative audience to assess the
metametamodel: other metametamodels expressed in mathematical or similar languages
are accessible largely only to information systems modelling researchers, and not to the
information systems modelling professionals whose work they are intended to benefit.
Conversely, because work on GOPRR has regularly been published in the information
systems community, it differs from those metametamodels that exist in commercial
metaCASE environments, and which are often guarded as trade secrets by the
manufacturer.

1.3 Same for metamodels and models

Thirdly, GOPRR has been designed to be applicable in the same way on both the type
and instance levels, i.e. to be the language for both metamodels and models. This
approach was already followed in the theory of OPRR, but not carried out in practice:
MetaEdit Personal implemented a significantly different approach to relationships, roles
and properties for the instance level than for the type level. Interestingly, this difference

 3

was one of the initial factors that persuaded me of the importance of having the same set
of concepts and ways of using them on both levels: metamodelling in MetaEdit Personal
was difficult in precisely those areas of difference.

When metamodelling, we normally are not actually thinking of types themselves,
but rather of their instances: we think in sentences of the form ‘a Class can be connected
to another Class by an Inheritance relationship’. Our starting point is thus in the language
we use to talk about models, and yet to make a metamodel we must translate this into
the language we use to talk about methods. The more differences there are between
these languages, the more likely we are to make mistakes in general. Anyone who knows
two closely related foreign languages will know there is another factor: if the two
languages are close, we are also liable to make more mistakes than normal in precisely
those elements which might be though to be the same, but are in fact different — what
linguists call the ‘faux amis’ (false friends). The difference between the language for
models and for metamodels is analogous to Hutchins, Hollan and Norman’s ‘gulf’, or
directness distance between a user’s goals and the human-computer interface (Hut85).
Their concept of ‘gulf’ is as applicable to a conceptual model as it is to a user interface.

On the user interface level, it is important to note that most metaCASE tools have
used a different representation, and often an entirely different program, for designing
metamodels as for modelling with them. MetaEdit Personal was the first environment to
allow metamodelling with the same tool as modelling. The metamodels were not
however directly manipulated, but instead representations of the metamodels as OPRR
diagrams were made using the normal Draw Window, and then those representations
were transformed via a special report into a text file in the format of the OPRR language.
This was recognised as perhaps the main strength of MetaEdit Personal (see e.g.
(Lo95)). However, reducing the gulf still further requires direct manipulation of both
metamodels and models with the same tools, and that the same concepts are used in the
same way in both metamodels and models. This has been one of the goals in MetaEdit+
and GOPRR.

Whilst GOPRR fully supports these requirements, the implementation in
MetaEdit+ has not been pursued to its logical end. For example, the Matrix Editor was
made able to handle both models and metamodels, but that functionality has not yet been
included in the release versions of MetaEdit+. The reason is interesting: metamodelling
via direct manipulation in visually oriented, user-friendly tools gave access to too much
power too easily. In our admittedly limited experience, metamodellers tended to make
sweeping changes to metamodels without thinking of the consequences to models,
leading to undesirable results. The effect was something like giving a Porsche to
somebody who has just passed their driving test; perhaps as method engineering
advances and matures as a discipline, practitioners will be able to control that kind of
power better. In the meantime, one solution would be to provide the metamodeller with
more information about the results of his actions when he attempts to do something
remotely dangerous. Another possible improvement would be to allow the metamodeller
to undo actions; currently MetaEdit+ supports abandoning transactions, but the
granularity of a transaction is usually of the order of tens of actions. Such fine granularity
undoing of type actions is however difficult to implement, being harder than the known
difficult problem of updating instances in response to (forward) changes of types.

To return to GOPRR, the subject of the appendix, it is a clear benefit that the same
GOPRR concepts are used in the same way for both metamodels and models, even just
on the evidence of reducing the conceptual gulf involved in metamodelling. The
possibilities for using the same tool support on both levels are interesting, if problematic.

 4

Designing GOPRR to be used on both levels allows us later to use the same tool support
if we desire, but does not commit us to that decision. Indeed, it provides the basis for
research in that area, and such research is valid even if the end result is that using the
same tools is not desirable.

2 GOPRR concepts

As GOPRR is basically the same for both metamodels and models, we shall make the
discussion simpler by discussing only models, adding comments on features particular
only to one level or the other where appropriate. Similarly, as GOPRR is representation
independent, we shall not discuss representations in detail here: they are covered in the
body of the thesis.

The primary concepts1 of GOPRR are Graph, Object, Property, Role and
Relationship. These are to be viewed in an object-oriented fashion: each element2 has an
existence in its own right, independent of being referred to by another element, and with
an identity independent of the elements it refers to.

In addition to these primary concepts, GOPRR also uses some secondary concepts,
many of which are perhaps better considered as simply data structures: sets, ordered
collections, and bindings. These do not have an existence in their own right (i.e. they
exist only if contained within a primary element), nor do they have a strong identity of
their own (e.g. two bindings with identical contents cannot exist in the same set at the
same time).

First we will briefly (and without prejudice!) introduce each concept, and then look
at how they relate to each other to see them in more detail.

2.1 Concepts

Perhaps the best way to illustrate the concepts of GOPRR is to look at a simple
representative example of their use. The figure shows an example model, with a
representation of each concept labelled.

1 Earlier articles have referred to these as ‘metatypes’; that however implies a position ‘above’ types and

thus further separated from instances, which obscures the fact that these are used equally of types and
instances.

2 An element is thus a particular type or instance.

 5

Code name

Mission

Number

Flight segment

Name

Passenger

Number

Shipment item

Call number

Aircraft

Date & time

Aircraft failure

Confidence level

Airborn item trajectory

Date & time

Airborn item

Weight

Cargo item

0,m

2,m

0,m

0,m

0,m

0,m

0,1

0,m

1

0,m

0,m 0,m

Real-Time Airlift System (OOAD)

RELATIONSHIP

ROLE

OBJECT

GRAPH

PROPERTY

FIGURE 1 GOPRR concepts illustrated by a graph and its contents

Why do I choose to illustrate the concepts via their representations? Simply because
there is no other way to look at a concept than through its representation: any other way
to show a concept is simply another representation, and probably one not as familiar to
the reader as the standard representations associated with a method, as used above. Also,
the representations from a method book often form a better starting point for analysing
the concepts than do the author’s own concept lists or ‘metamodels’, which often
contain contradictions.

This is a brief introduction to the concepts of GOPRR, but let us just observe a few
things before moving on. The relationship marked has a symbol, and three roles coming
out from it to attach to the objects. Whilst there are other ways of modelling this kind of
situation (e.g. with an object instead of a relationship), we follow the intent of the
method, which uses the term ‘relationship’. Secondly, each of the objects shows two
properties (and a third one which is blank for now): for instance, both ‘Weight’ and
‘Cargo Item’ are properties, although we as humans will use the latter as a convenient
short-hand to refer to that object as well. Note also that roles may have any kind of

 6

properties: the cardinality constraints (e.g. 0,m) shown here are just one example and in
no way special.

The hardest concept to illustrate is Graph: the ‘window’ metaphor used here gives
an indication that a graph itself has properties (the name at the top), and includes objects,
relationships and roles bound together. Let that suffice for the moment, as we move on
to look at how the different concepts relate to each other3.

2.2 Properties and NonProperties

The concepts of GOPRR can be divided into two categories: properties and non-
properties4. Figure 2 illustrates the division. Graph, Object, Role and Relationship can all
have Properties.

Non-property

Graph

Property

Object Role Relationship

Has

Is a

FIGURE 2 Properties and non-properties.

Two additional characteristics of properties are worthy of note: a property type specifies
a data type for property values, and a given property can be shared between several non-
properties.

2.2.1 Data type

Whilst GOPRR itself does not limit the range of data types, current data types of
properties include:

• String (e.g. name of a process)

• Number (e.g. thread of execution of message)

• Boolean (e.g. primary key?)

• Text (e.g. documentation field)

• Vector graphic (e.g. a map or schematic)

• Collection of items (e.g. attributes of an object)

• Non-property (e.g. an attribute in an attribute list of an object may itself be an object).

Property types with data type String can further specify that the values must come from a
predefined list by defining the members of that list and setting their widget type. The
widget type has a representational effect (the widget used to edit the property looks
different) and a conceptual effect (the legality of values outside the list). Existing widget
types are Fixed List (only values in the list are allowed), Overridable List (other values

3 The rest of Section 2 is loosely based on Chapter 4 of the MetaEdit+ User’s Guide (Tol95).
4 Whilst the term ‘non-property’ is far from perfect, it has become standard over the years for both

OPRR and GOPRR.

 7

are allowed, but will not be added to the list) or Editable List (other values are allowed,
and will be added to the list).

For collection data types, the property type must also specify the type of the
contents, which can be either a simple string or a non-property type. Similarly property
types with a non-property data type must specify which non-property they may contain.
In this way complex property types can be built up: an important extension in GOPRR
compared to OPRR. An example of a complex property can be found from object type
Class in object-oriented methods because it has collections of attributes and of methods
as properties, and each attribute or method itself is an object, and as such can have one
or more properties. In principle these new properties could be again complex ones and
therefore they too could lead to more properties and so on. GOPRR does not limit the
number of complex properties or their depth in any way: for instance, cyclic structures
are allowed.

In addition to the data types above, other data types have been envisaged and
defined, but are not implemented in MetaEdit+. These include audio, video and bitmaps,
and external links. An external link would specify the arguments to an external program,
e.g. a Word document and a bookmark, thus opening the document at that bookmark; a
URL to open a document on the World Wide Web; or an email address URL to open the
user’s standard email program starting a message to the address specified.

2.2.2 Property sharing

A particular property can be shared between two or more non-properties, meaning that
changes to the property via one non-property are also reflected in the other non-
properties. Therefore the property is basically defined only once and several properties
refer to the same value. For this to be possible, the property in each of them which is to
be common must have the same property type, and the data type of that property type
must be string, number, or text. The first restriction actually improves method
integration: it gives a way of specifying that certain properties of certain object types can
be shared, and also makes sharing on the instance level easier, by making the list of
possible properties to share much smaller than if we simply listed e.g. all string
properties.

For example, property sharing can be used in object diagrams, so that a
‘Superclass’ string property in one class can be shared with the ‘Class name’ string
property in the superclass. Thus if the ‘Class name’ of the superclass is changed, this will
also be reflected in the ‘superclass’ property of the subclass. (Another, better way of
achieving the same result would be to have Superclass property with a Non-property
data type of Class: that way the whole superclass can be linked, not just its name).

2.3 Graph contents and bindings

Each graph contains a number of other non-properties: objects, roles and relationships.
For example the OOAD graph in Figure 1 contains objects (e.g. the Mission
Class&Object), relationships (e.g. the inheritance relationship marked) and roles (e.g. the
subclass role of Cargo Item marked). Although the term ‘contains’ is used, the
relationship is not exclusive: the same object can be a part of many graphs5.

5 Earlier implementations of MetaEdit+ also allowed roles and relationships to be reused in a similar

way in models. In practice this more often confused than helped users, and thus currently there is no
way in the environment to reuse instance roles and relationships, other than as property values or

 8

Role Relationship

 Graph

Object

Contains

FIGURE 3 Parts of the graph.

The information about how the objects, roles and relationships in a graph are connected
is stored as bindings in that graph. Chapter 2 (Kel95) is all about bindings: here we
present a brief overview. Each binding stores a relationship, two or more roles, and for
each role, one or more objects. For instance, Figure 4 shows the inheritance relationship
where Shipment item is the superclass and Passenger and Cargo item the subclasses.
Note that none of the objects, relationship or roles contains any information about the
others: the binding is the only source of this information, and it is stored in the graph.
Note also that a line is thus a representation of a role, not a relationship: this is obvious
from the ternary relationship below, but might initially seem counterintuitive from
looking at a binary relationship.

Currently on the instance level in MetaEdit+ each role in a binding is associated
with only one object; most ISD methods with multiple objects in a similar role are best
modelled as having multiple roles, with one object per role, as below. GOPRR would
however allow multiple objects with the same role, and this is used often on the type
level.

Name

Passenger

Number

Shipment item

Weight

Cargo item

RELATIONSHIP

ROLE

OBJECT

OBJECTOBJECT

ROLE ROLE

FIGURE 4 Binding components.

Bindings on the type level thus specify what kinds of bindings are legal in graphs of this
type: for instance, a Data Flow Diagram specifies that a binding can exist for a Data
Flow with an External, Data store or Process in a from role and a Process in a to role.
However, there will be no binding with External in both from and to roles, because such
a binding is illegal in Data Flow Diagrams.

through property sharing. Role and relationship types are however often reused, with significant
savings. GOPRR of course continues to allow reuse of all these components on both levels.

 9

2.4 Decomposition structure

An object (e.g. a Process in a Data Flow Diagram) can be decomposed into a new
diagram. This feature is usually known as decomposition or levelling as it forms a
hierarchy of models.

 Graph

 Graph

Object 1

Object 2

Object n

decomposition

decomposition
bottom up

top down

FIGURE 5 Decomposition structures.

In MetaEdit+ you can create decomposition structures in two ways (Figure 5): top-
down, by selecting an existing object and making a new decomposition graph, where you
describe it in more detail, or bottom-up, by selecting some existing objects and moving
them and their relationships into a new decomposition graph, replacing them in the top
graph with a new object. The end result is the same in GOPRR: an object in the top
graph has a decomposition graph describing it in more detail.

Graphs formed by bottom-up decomposition normally contain some interface
bindings, which store information about the bindings that existed between the objects
from which the graph was formed and other objects in the top graph. In this way the
graph can be reused in other places with an interface which specifies how many
relationships must be attached. An important question about the interface is how specific
it should be: whilst storing more information about the interface bindings, e.g. the types
of their previous roles and relationships, may seem appropriate, it will have the effect of
limiting method integration. The decomposition graph could only be reused where the
relationship and role types overlap. A better approach is to store no information about
types in the decomposition graph interface bindings, but rather leave that up to the graph
type where it is to be reused. The graph type can specify which types of objects may
decompose to a graph of this type, and also which bindings of roles and relationships are
legal for objects of that type.

A typical decomposition structure can be found from Data Flow Diagrams, in
which a process can decompose into a new Data Flow Diagram. Note that only one
decomposition is allowed for an object, and applies in all graphs containing that object.

Whilst the discussion here has been restricted to objects, there is in principle no
reason why a relationship or role could not decompose. Currently no method to our
knowledge contains such a structure, and thus it is not implemented in MetaEdit+.
GOPRR itself allows the structure, but the operations for handling interface bindings
(e.g. when performing bottom-up decomposition) have not been defined, and their
semantics would indeed be problematic.

 10

2.5 Explosion structure

Each object in a graph can also be linked to other graphs via explosion structure (Figure
6). Basically the explosion structure allows to select one object from the graph and
explode that to a new graph. An object can have a different set of explosions in each
graph where it is used. Explosion is often used between different graph types.

 Graph Object
in graph

Graph

 Graph

Explode

Explode

Explode

FIGURE 6 Explosion structure.

As with decomposition, explosion structures are also method dependent. An example of
a explosion graph can be found from most object-oriented methods, in which an Object
or Class in an Object Diagram can be further described in a State Diagram by exploding
it into a new graph.

Again, whilst current methods allow only objects to explode, there is no reason
why relationships, roles and even properties could not explode. Relationship and role
explosions are supported in GOPRR, and in the editors of MetaEdit+. Property
explosions are slightly problematic, because explosions are stored with each graph (recall
an object can have different explosions in different graphs), and a property is not directly
contained in a graph in the same way as objects, relationships and roles. This difficulty
also offers an explanation and a solution: it is not perhaps desirable for properties to
explode. The situation where we might conceive of such a property is probably one
where the property itself refers to the graph it explodes to, and this is better modelled by
a property whose value actually is that graph. The other likely scenario is where the
property’s value is itself an Object: in that case it is possible to make that Object refer to
the appropriate graph as its decomposition. These are already supported by GOPRR and
MetaEdit+.

3 A model of GOPRR

A metametamodel is almost by definition difficult to represent: it must be at least as
powerful as the methods it models. Thus trying to represent the metametamodel in a
normal ISD method is fraught with difficulties. One popular option is to represent a
metametamodel in itself; I see few gains from this, and several problems, not least of
which is the question of recursivity: reading the model presupposes an understanding of
the language used, in this case the model itself.

A second problem is perhaps peculiar to GOPRR among metametamodels,
although it is commonly encountered in object-oriented methods in general: Current
well-known object-oriented methods have poor support for describing the class side of

 11

classes, concentrating instead on the instance side. This is a particular problem where the
object-oriented programming paradigm has significant power on the class side, as does
Smalltalk, used for MetaEdit+ and hence GOPRR. In our case, it is an even more
significant problem, because GOPRR makes much use of class side features of Smalltalk,
in particular class instance variables and class methods. This is far from an
implementation issue: these exactly represent the behaviour of classes as objects
(instances) in their own right. Such a feature is obviously vital in MetaEdit+’s
implementation, as we wish to treat method types as classes (on the model level) and
also handle them as instances (on the metamodel level).

For these reasons we are forced reluctantly to create our own little method for
describing GOPRR. The concepts and symbols are as follows:

Class name
instance
variables

class instance
variables

abstract?

*

Class, showing whether it is
abstract (has no instances), its
name, variables held by its
instances and variables held by
the class itself.

Inheritance relationship
(superclass has arrow head)

Reference relationship: item on
left refers to item on right (i.e.
with arrow head) via a variable.
* indicates that the item on the
left uses many of the item on the
right.

FIGURE 7 Method concepts

The method is clearly based on any number of other object-oriented methods, with the
most important difference being the Class symbol’s lowest list box. In other methods this
contains a list of methods implemented by the class; here it contains a list of ‘class
instance variables’. These are precisely instance variables held by the class itself, i.e. the
class considered as an object. They thus differ from normal ‘class variables’ in that each
subclass of this class has its own values for these variables. A second difference is that
the normal aggregation, association, etc. relationships are replaced by a single ‘reference
relationship’, with a more precise semantics: one object refers to another via a variable.
The reference relationship can also have a ‘*’ added, in which case the variable holds a
collection of the objects at the other end, rather than directly holding a single object. The
kinds of collection can be seen from the ends of the variable names:

• a ‘Set’ is a free size unordered collection of non-equal objects

• a ‘Coll’ (short for OrderedCollection) is a free size ordered collection of objects

• a ‘Dict’ (short for Dictionary) has a free size unordered collection of non-equal ‘key’
objects, and for each key object a ‘value’ object. An object can appear as the value of
several ‘keys’, and the value objects are often themselves collections.

For Figure 8, the method has been slightly extended: non-primary concepts are shown in
grey, and the reference relationships for primary concepts apply to both the class and
instance levels. For example, a Graph has a bindingSet which contains Bindings, each
with a Relationship etc.; on the class level a Graph type has a bindingSet which contains

 12

Bindings6, each with a Relationship type etc. As is common practice with object-oriented
methods, only the most important reference relationships are shown: the rest are implied
by the instance and class instance variables.

An important point to note is that this model does not show any actual method types or
their instances. Types are formed as subclasses of the GOPRR primary concepts. In

6 Not Binding types: Binding is a data structure not a primary concept. These are thus normal instances

of class Binding, which happen to contain types (classes) instead of instances.

NonProperty
decompGraph
(properties added by
types i.e. subclasses)

propertyTypeColl
propertyNameColl
propertyUniquenessColl
defaultProperty

abstract

Graph
relationshipSet
roleSet
objectSet
bindingSet
explodeDict

relationshipSet
roleSet
objectSet
bindingSet
explodeDict
decompDict
constraintSet
reportSet

abstract
Relationship

abstract
Role

abstract
Object

abstract

Binding
relationship
connectionColl

Connection
role
objectSet
cardinality

*

*

*

Concept

typeName
typeDescription

abstract

Property
value

dataType
legalValueTest

abstract

*

*
*

*
Project

name
graphSet *

FIGURE 8 GOPRR concepts, showing inheritance and reference hierarchies

 13

particular, NonProperty types (i.e. subclasses of Graph, Object7, Relationship and Role)
can add properties for their instances; the lists of the types, local names and uniqueness
of these properties are stored in class instance variables, and instance variables are added
to the subclass for instances to store their properties.

The model also does not show parts of the MetaEdit+ MetaEngine implementation
of GOPRR that are concerned with representations, performance improvements or
technical details. Some names have been changed to protect the innocent… The Project
secondary concept has been included as it forms an important part of the reference
hierarchy; it is described more accurately in Chapter 5.

There is one interesting difference between type and instance levels in GOPRR, at
least in this implementation: an Object refers to its decomposition Graph, but an Object
type does not refer to its possible decomposition Graph types; rather, a Graph type
contains a dictionary of mappings from Object types to Graph types. This reflects the
desire that an Object should have the same decomposition graph wherever it appears
(regardless of the Graph it is in), but that an Object type could be reused in different
Graph types, and its decomposition Graph type — or even ability to be decomposed —
in each Graph type would not necessarily be the same.

In other respects, the type level is largely the same as the instance level, with some
additions. These additions are often semantically some kind of rule or constraint, for
instance the legalValueTest in Property types, which is used to constrain property values
to follow some rule (described in Chapter 3 (Kel96)).

Hardly any discrepancies exist in the other direction, i.e. so that the instance level
would have more information that the type level. Thus it appears that one way of
viewing the type level is as a specialisation of the instance level. This gives rise to an
interesting paradox: how can a class be a subclass of its own instance? No satisfactory
solution presents itself: MetaEdit Personal’s solution, of modelling types as instances of
classes entirely separate from the instance level, was on the whole less effective than that
in MetaEdit+: implementing the type-instance dimension using Smalltalk’s existing class-
instance paradigm provides a clean solution with a good ‘fit’. We thus treat this idea (of
the type level as a specialisation of the instance level) as an interesting observation and
starting point for further research, but do not use it in our implementation.

3.1 Concepts and their information

Each concept from Figure 8 is presented here along with a description of the information
it holds on the instance and type levels, i.e. its instance and class instance variables.

3.1.1 Concept

Concept is the ancestor class of all GOPRR instances, and its class is the ancestor of all
GOPRR types.

Instance level
No variables are common to all instances; some behaviour is, e.g. the ability to answer
the type of this instance.

Type level
typeName: A string storing the user-visible name of the type

7 In Smalltalk the class name ‘Object’ is already used by the system root class, so the actual

implementation uses the name ‘OPRRObj’. Here we will ignore this detail and use ‘Object’.

 14

typeDescription: A longer piece of text describing the type and its use in more detail.
This is used in building the help information for each method, which describes a Graph
type and its contents for the CASE tool user.

The Concept type is also the place for storing notes on the type from the point of view of
the metamodeller, i.e. method engineering information: where the type comes from
(author, reference book, metamodeller, etc.), how it has been used by other types, and
how it has been found to work in practice. This could be stored in typeDescription, but it
would be better to have separate data structures tailored for that purpose. For this reason
the Linking Ability hypertext and design rationale subsystem of MetaEdit+ (see Chapter
4) is to be extended to the type level (Oin96).

3.1.2 Property

Property types are subclasses of Property, and property instances are instances of these
subtypes.

Instance level
value: The value of the property, an instance of this property type’s dataType

Type level
dataType: The class of the values. If this is a collection, the class of the elements is also
specified.

legalValueTest: A test for new values, to see whether they are acceptable, e.g. DFD
Process numbers should be of the form ‘3’, ‘3.1’, ‘3.1.2’ etc. The tests are stored as
Smalltalk code (BlockClosures), in principle allowing any conceivable test. The tool
support however has only allowed BNF representations.

3.1.3 NonProperty

NonProperty types are subclasses of NonProperty, and property instances are instances
of these subtypes.

Instance level
decompGraph: A Graph that represents the contents of this NonProperty. This is thus a
way of forming complex objects.

property variables: Actual NonProperty types are defined as subclasses of Object,
Relationship, Role or Graph, and they add an instance variable for each property their
instances have. Whilst NonProperty itself has no such instance variables, the behaviour
for dealing with them is defined here.

Type level
propertyNameColl: A collection of strings. For each property added by this type, the
local name by which the property is referred to within this type. The property type’s own
name would not be sufficient, because it would reduce the possibilities for reuse by
associating a certain semantics with the type, and would prove problematic if using the
same property type several times within a single NonProperty type. This is thus the name
shown to the user.

propertyTypeColl: A collection of Property types, parallel to the above collection.

 15

propertyUniquenessColl: A collection of Booleans, parallel to the above collections. If
true, it means that that property must have unique values in all instances of this type, i.e.
that the value must serve as an identifier for instances of this type.

defaultProperty: Refers to the property which is displayed as a name for instances of this
NonProperty. This is thus not necessarily the first property, nor is it necessarily unique.

The parallelism of propertyNameColl, propertyTypeColl and propertyUniquenessColl
could perhaps be more elegantly implemented by adding a new secondary concept,
PropertyHolder, which would have propertyName, propertyType and
propertyUniqueness as instance variables. The NonProperty type would then replace the
existing three collections with a single propertyHolderColl. The current implementation
however reflects the usage of these collections: it is more common to be concerned with
e.g. all the property names together, than with the name, type and uniqueness of a single
property.

3.1.4 Object, Relationship, Role

These add no new variables, and practically no new methods. This reflects several
important parts of GOPRR: the separation out of object binding from property holding in
relationships and roles, the storage of binding information in Graph rather than individual
concepts, the resultant similarity of these types, and thus the possibility of polymorphism
between these types.

3.1.5 Graph

Instance level
objectSet: A set of all the objects directly included in this graph.

relationshipSet: A set of all the relationships directly included in this graph.

roleSet: A set of all the roles directly included in this graph.

bindingSet: A set of all the bindings of the above objects, roles and relationships in this
graph.

explodeGraphDict: A dictionary of ‘NonProperty → Set of Graphs’ giving the explosion
graphs for each of the NonProperties directly included in this graph.

Type level
The type level includes the same variables as the instance level8, but holding types rather
than instances, plus:
decompGraphDict: A dictionary of ‘NonProperty type → Set of Graph types’ giving the
possible graph types to decompose to for each of the NonProperty types included in this
graph.

constraintSet: A set of constraints restricting legal structures within graphs of this type.
Currently there are two types of constraint, and both are expressed purely as data.

8 This similarity between type and instance levels is an important part of GOPRR. Unfortunately, the

implementation here does not best reflect this. The idea of the type level being a specialisation of the
instance level, mentioned earlier, is in some ways appealing, but would mean instances were no longer
instances of their types. Another easier solution would be to have a new secondary concept,
GraphContents, which would hold precisely the information shared here, and have a subclass
GraphTypeContents, which would add decompGraphDict etc.

 16

ObjectCardinalityConstraint specifies an Object type and a maximum number of instances
per graph for that type. ObjectConnectivityConstraint specifies an Object type and a
Relationship or Role type, and a maximum number of times an object of that type may be
in a relationship or role of that type within a graph (see Postscript to Chapter 2 (Kel95)).

reportSet: A set of reports defined for this graph type. Reports are stored as textual
specifications in the report definition language (see Chapter 4 and (Tol95)), and possible
uses include textual descriptions of models (also as RTF or HTML), consistency
checking, code generation etc.

3.1.6 Binding

Both Binding and Connection are simply data structures: they are used on both the
instance and type levels, but as data structures they themselves work as instances. They
thus generally hold either instances (on the instance level) or types (on the type level): to
avoid repetition the definitions below talk only of the instance level. In some cases they
can be used to hold a mixture, e.g. in one stage of creating a new binding, we know the
instance objects it is to connect, and the types of the relationships and roles we are to
create between them.

relationship: A relationship

connectionColl: A collection of Connections, holding the objects participating in each
role.

3.1.7 Connection

A Connection is a Role and a set of Objects (hence its older name, RoleAndObjects),
which represents one role part of a Binding and the objects attached in that role.

role: A role

objectSet: A set of objects participating in that role: currently a single object on the
instance level, but often several object types on the type level.

cardinality: Currently only used for the type level9: A pair of whole numbers specifying
the range of numbers of times that this Connection may occur / be duplicated in bindings
on the instance level that are created on the basis of this binding on the type level. The
second number may also be infinity, specifying an unlimited number of occurrences. The
default is 1..1 (exactly one occurrence); other common values are 0..1 (optional), 1..N
(e.g. subclass role in an inheritance relationship), and 2..2 (where this is the only
Connection in a symmetrical binding).

3.1.8 Project

A project is basically just a named set of graphs, in practice those related to a particular
ISD project. Each graph is assigned to a particular project when it is created, but may
still be referenced from other projects. Chapter 5 talks about this in more detail (it is

9 Whilst other such constraints are included directly with the Graph type (e.g.

ObjectConnectivityConstraint and ObjectCardinalityConstraint), this is best represented here, as it
applies to this particular Connection within this particular Binding, as opposed to the others which are
general for a particular Object type within the whole of the Graph type. Purists may prefer to add this
variable in a TypeConnection subclass.

 17

referred to there as a MultiUserColl), and the use of projects is discussed in (Tol95).
Both are more of an implementation issue in MetaEdit+ than a feature of GOPRR as a
conceptual metametamodel. Project would require significant examination before it could
qualify as a full concept: it must exist for both type and instance levels, and be linked
with the Process and Agent models.

4 GOPRR and object orientation

GOPRR makes extensive use of object orientation both conceptually and in its
implementation, as a service to its users, whether tool designers, metamodellers or
modellers. Of course, this does not restrict GOPRR’s ability to model non-object-
oriented methods. Whilst opinions on what constitutes object-orientation differ, we can
examine GOPRR briefly from the viewpoint of several important object-oriented
principles: inheritance, encapsulation, polymorphism, abstraction and reuse. This
information is provided more as a source of reference than a definitive statement on how
object-orientation should be used in metaCASE; to emphasise this we present the
information in the form of a list.

Whilst elsewhere in this appendix we have excluded representational model or
metamodel information, in this discussion we also include the most basic representation
elements for types — symbols and dialogs — as they include some good examples of
object-orientation.

4.1 Inheritance

• Subtypes inherit supertype’s properties

 This allows fast modelling of similar types, e.g. Class and Class&Object, which
share many properties and differ only in a few properties, their symbol and their
dialog.

• Data type of complex property

 Most data types are simple, e.g. String, but they may also be Object type etc. A
Property can hold any instance of the given data type or its subclasses, e.g.
reference to a Class could also be to a Class&Object

• Bindings: Legal relationships

 If an object type can take part in a binding, all its subtypes can too. This simplifies
definition of legal relationships: for instance allowing inheritance relationships for
Class also allows them for Class&Object; we can still correctly define instantiation
relationships as legal only for Class&Object.

• Rules for legal values in property types

 These are currently specified as regular expressions, and are thus intended largely
for string and text properties. For example, a DFD Process number should be [0-
9](.[0-9])*. As an option, the supertype rules can also be checked.

 18

• Reports

 Reports are defined in Graph types. A user can run reports from the type of the
current graph or from any supertype right up to Graph, which stores some reports
that are generic for all methods.

Inheritance is thus supported in many but not all of the places where it might be useful:
for instance, inheritance in bindings is only applied to object types, not relationship or
role types. Each case has been looked at on its own merits. For example, when creating a
new relationship the instances of the objects to be connected are already known, and can
be compared with the legal bindings for that graph type. This gives us the types of the
roles and relationships which can be created, i.e. a list of often several possible bindings.
If we were to allow subtypes for each of these, the list would be much longer; if we show
only the specified types, and then ask the user to choose among those and their subtypes
while creating the relationship and roles, he may have to answer several more dialogs. In
either case, creating a relationship would be significantly more complicated. Because of
this extra complexity, and because subtyping of relationships is in any case relatively
uncommon, it was decided not to apply inheritance in this case.

Another factor motivating against applying inheritance in every possible place is
the multiplication of side effects. When we make a subtype, we normally have a certain
purpose in mind, e.g. inheriting shared properties, and the more other ways in which the
inheritance will affect the use of that type and its instances, the more likely the
metamodeller is to overlook one such side effect. Even assuming no such mistake, the
metamodeller would often find himself unable to use inheritance where he would like to,
because of an undesirable side effect. A possible solution to the latter problem would be
to specify along with each mention of a type in e.g. a binding, whether we mean just the
type, or the type and all its subtypes.

4.2 Encapsulation

The application of encapsulation to a data model is debatable: perhaps the best way to
understand it is ‘Behaviour always accompanies data’.

• Rules, Symbols, and Dialogs stored with type

 On an implementation level:

 Rule = Smalltalk code block, automatically generated

 Symbol = pure data structure

 Dialog = data structure encoded in automatically generated method

• Changes to type automatically update symbols and dialogs

 Thus keeping user-visible behaviour up-to-date with data.

• All other behaviour is inherited from GOPRR concepts

 The behaviour is defined in the methods in the concept class, which use the values
of the variables in the type and instance.

 19

4.3 Polymorphism

• Object etc. as Property: ‘Complex’ property

 This is often used in two situations: to refer to another object, or as a way to hold
a complex piece of information.

• Relationship as Object

 E.g. NIAM’s objectified relationship: the relationship A-B itself takes part like an
object in another relationship with C (see Chapter 2 (Kel95)).

A B

C

A-B

• Overloading

 Many operations are identical for both types and instances, as discussed earlier.

• Overriding

 Subtypes can override dialogs, rules, and symbols

4.4 Abstraction

• Abstract types

 An abstract type is one that is not instantiated. It is created but not used in a
Graph’s types set, yet can still be used in Graph’s binding set (e.g. DFDObject
could be the supertype of all the DFD Object types, and we could define bindings
to and from DFDObject and Process — an elegant and compact solution to the old
problem of DFD bindings). Abstract types are useful when properties or legal
relationships are shared by several types. They can also be used as way to organise
types, with no other semantics; for example, MetaEdit+ organises Graph types into
their methodologies in this way.

• Complex Properties

 These use abstraction in the sense that types can use complex property types
without needing to know the details of the object type. They thus form a better
solution than encoding several pieces of information into a string.

• Separation of Binding and Relationship

 Relationships carry no excess baggage to encumber their reuser. For example,
OPRR in MetaEdit Personal and early forms of GOPRR included binding and role
information in relationship types. This meant that a given relationship type always
had to be bound with exactly the same role and object types in the same way,
preventing its reuse.

 20

4.5 Reuse

Whilst the status of reuse as a pure object-oriented principle is debatable, it is included
here because of its importance in practical CASE use.

• Objects, Roles, Relationships, Graphs, Properties can be reused

 Reuse can be of both types and instances: reuse on the type level defines possible
reuse on the instance level. In the standard MetaEdit+ repository, which contains
around 500 types, over 30% of the types are reused. This figure could be much
higher if methods were not followed exactly: instead of needing two slightly
different versions of an ‘Process’ type for two kinds of Data Flow Diagram, we
could make do with reusing the same type in both.

• Reuse from different projects, graphs, objects

 MetaEdit+ provides support for reuse by allowing users to choose a component to
reuse by its current location or type, and to search for reusable elements in
browsers (including using wildcards). Users can also view where an element is
used.

5 Example metamodels

Modern methods, especially object-oriented ones, are significantly more complicated
than their structured predecessors. One effect of this is that metamodels are
correspondingly more complicated. Graphical metamodelling languages that attempt to
show every feature of a method in a single diagram produced results that were already
rather over-complicated even for simple methods such as Data Flow Diagrams (see e.g.
Chapter 6 (Kel94) or (Hof96, p. 52)). Partly for this reason, no ‘official’ graphical
representation of GOPRR has been developed.

The solution adopted by current methods to the problem of information overload
appears to rely on computer support: the basic information is shown graphically, and
more detailed information is visible in the CASE tool implementation of the method by
selecting a given object and e.g. double-clicking it. This is of course a welcome
development: methods are being designed to take advantage of CASE support, rather
than simply being computer implementations of old pencil-and-paper methods.

Because GOPRR is designed to take advantage of computer support, the best
environment for viewing GOPRR metamodels is MetaEdit+ itself. This has the
significant added advantage that the metamodels can be tried out in practice, and even
altered and the results compared with the original version. For these reasons, this
appendix contains no metamodels, but rather the interested reader is asked to contact
MetaCase Consulting10, who will be happy to supply you with a free time-limited
evaluation license: please mention this thesis when you contact them. The evaluation
license includes 51 different graph types belonging to 13 methodologies, from Business
Systems Planning to the Unified Modeling Language.

10MetaCase Consulting, Ylistönmäentie 31, FIN–40500 Jyväskylä, Finland

Tel. +358 14 4451 400, Fax. +358 14 4451 405
Email: info@metacase.com, WWW: http://www.metacase.com

 21

5.1 Metamodelling by example: a way forward?

The problem of the complexity of graphical metamodels, coupled with the need to
provide some kind of representation of metamodels on paper, motivates an abstraction or
information hiding approach. Together with the need to reduce the conceptual gulf
between a method and its metamodel representation, this gives cause to consider a new
paradigm of metamodel representation: metamodelling by example. Of course, examples
have always been used to teach a language, but in the field of metamodelling it is possible
to go one step further, and allow examples to actually specify certain parts of a method
fully. The most appropriate candidate parts would seem to be the object types and their
bindings with relationship and role types.

For instance, Figure 9 shows an OPRR metamodel of Real Time Structured
Analysis Data Flow Diagram, including the object types and their bindings with role
types and relationship types (and hence omitting property types and usage). Although the
method is small by current standards, the metamodel is already quite complicated to
read. In particular the bindings and role types, with their many crossing lines, account for
much of the complexity, although in general they are less important for an overview than
the object types.

Data store Data transformation Terminator Buffer Control transformation

Discrete data flow

Discrete flow between
transformations

Continuous flow Signal flow
Signal flow between

transformation

Activation flow

Deactivation flow

M0
(De)actication from

M0
(De)activation to

M0
Continuous flow from

M0
Continuous flow to

M0
Discrete flow from

M0
Discrete flow from transformation

M0
Discrete flow to

M0
Discrete flow to transformation

M0
Signal flow from M0

Signal flow from transformationM0
Signal flow to M0

Signal flow to transformation

FIGURE 9 OPRR metamodel of Real Time Structured Analysis

Compare this with Figure 10, which depicts exactly the same method, but uses the
representations of the method itself to show the concepts. Each legal binding is shown by
one relationship and roles between the appropriate objects, using the line style and arrow
heads of the method. Whilst the complexity of bindings in this particular method still
causes some difficulty, the overall impression is rather clearer. The only information not
explicity shown here is the names of the roles: the types are however apparent from the
symbols and from the key on the right.

 22

Buffer

Control Transformation

Data store
Data transformation

Terminator

Discrete flow

Signal flow

Continuous flow

Deactivation flow

Activation flow

FIGURE 10 Example-based metamodel of Real Time Structured Analysis

As GOPRR is basically the same for type and instance levels, supporting metamodelling
by example is relatively simple. A prototype implementation in MetaEdit+ allows the
same conceptual metamodel to be represented in three different ways: a standard OPRR
metamodel, a matrix metamodel (see Chapters 6 (Kel94) and 7 (Kel97)), and a
metamodel by example. These would be useful for different aspects of metamodelling,
with the standard form-based metamodelling tools perhaps being used for the low-level
details not directly represented here.

References

Hof96 Hofstede, A. H. M. ter, T. F. Verhoef, “Meta-CASE: Is the game worth the
candle?,” Information Systems Journal 6(1) (1996) pp.41–68.

Hut85 Hutchins, E. L., J. D. Hollan and D. A. Norman, “Direct Manipulations
Interfaces,” Human Computer Interaction 1 (1985) pp.311–338.

Kel94 Kelly, S., “A Matrix Editor for a MetaCASE Environment,” Information and
Software Technology 36(6) (1994) pp.361–371.

Kel95 Kelly, S., “What's in a Relationship: on distinguishing property holding and
object binding,” in Proceedings of 3rd International Conference on
Information Systems Concepts, ISCO 3, W. Hesse and E. Falkenberg (Ed.),
University of Marburg, Lahn, Germany (1995).

Kel96 Kelly, S., K. Lyytinen and M. Rossi, “MetaEdit+: A fully configurable multi-
user and multi-tool CASE and CAME environment,” pp. 1–21 in Advanced
Information Systems Engineering, proceedings of the 8th International
Conference CAISE’96, P. Constapoulos, J. Mylopoulos and Y. Vassiliou
(Ed.), Springer-Verlag (1996).

Kel97 Kelly, S., M. Rossi, “Differences in Method Engineering Performance with
Graphical and Matrix Tools: A Preliminary Empirical Study,” in Proceedings
of 2nd CAiSE/IFIP8.1 International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design, EMMSAD’97, June 16--17,
Barcelona, Spain, K. Siau, Y. Wand and J. Parsons (Ed.) (1997).

 23

Lo95 Lo, Pius, “Graphical Interface for CASE Environment Definitions in
MetaView,” Master's Thesis, University of Alberta, Canada (1995).

Oin96 Oinas-Kukkonen, H., “Method Rationale in Method Engineering and Use,”
pp. 87–93 in Method Engineering ’96: IFIP WG 8.1/8.2 Working Conference
on Principles of Method Construction and Tool Support, Atlanta, August 26-
28, S. Brinkkemper, K. Lyytinen and R. Welke (Ed.), Chapman-Hall, London
(1996).

Tol95 Tolvanen, J.-P., S. Kelly, “MetaEdit+ User’s Guide,” Technical Report,
Department of Computer Science and information Systems, University of
Jyväskylä, Jyväskylä (1995).

