
165

CHAPTER 5

APPLICATION OF REPOSITORY TECHNOLOGY AND
CONCEPTS TO A METACASE ENVIRONMENT

Manuscript (submitted), 1997

166

APPLICATION OF REPOSITORY TECHNOLOGY AND
CONCEPTS TO A METACASE ENVIRONMENT

Steven Kelly
kelly@cs.jyu.fi

MetaEdit+ is a metaCASE environment which allows multiple simultaneous
metamodellers and modellers. We describe how it forms a repository for
(meta-)CASE data, and examine how it matches up to the requirements for a
repository given by Bernstein, in particular its architecture, MetaEngine
repository engine, generic tools, and tools using the repository. Important
features of MetaEdit+ include its extensibility and extensive support for reuse
and navigation. We describe the automatic locking strategies that enable
MetaEdit+ to offer a high level of concurrency whilst guaranteeing
consistency. In particular we describe a new collection data structure that
allows high concurrency of updates even at small sizes. Finally, we evaluate
MetaEdit+’s collaboration support, comparing it with several CASE tools.

1 Introduction

MetaCASE has long been suggested as the answer to many of the current
problems of CASE tools, in particular their inflexibility. Whilst a normal CASE
tool supports only a single fixed method for designing information systems, a
metaCASE tool can be configured by the user to support different methods.
This allows organisations to support those methods they already have in use,
and modify them as necessary to address their changing needs. Recently
commercial and academic metaCASE tools have started to appear, with a few
tools serious enough to take into industrial use. However, none of these tools
support metaCASE in a multi-user environment, and most are single user even
for CASE work. This is particularly odd, as metaCASE is really only useful in a
multi-user environment: developing and using a custom method is not
normally cost effective for a single user.

Even standard CASE tools have been slow to move from single to multi-
user support. Empirical research has shown the current lack of multi-user
support in CASE tools is a serious problem (Sto93, Rup95). In particular,
Selamat et al. (Sel94) found that lack of multi-user support was the single
largest CASE-specific reason why CASE tools were not being adopted in
Malaysia. In addition to these questionnaire-based surveys of organisations, an
empirical laboratory examination by Vessey & Sravanapudi (Ves95) found that
support for co-operative working was poor in current CASE tools.

Another commonly identified source of discontent with CASE tools is the
lack of integration between methods within a tool (Sto93, Rup95). This can often
be explained by the fact that many tools use a simple file-based system for
storage, rather than a true repository.

MetaEdit+ is a multi-user repository-based metaCASE environment which
was produced by the MetaPHOR research project, and has been commercialised

167

and available as a full product since November 1996. Other papers have
examined its metaCASE features (Kel96) and innovative CASE features
(Kel97b); in this paper we concentrate on its use as a repository for
(meta-)CASE data.

Note that MetaEdit+ is not being proposed as a generic repository in the
same sense as those database / repositories currently appearing on the market,
although it too can store anything from program code to business data. It is not
used to implement the business processes or store the current number of
widgets in stock; rather, it is used to model business processes and information
systems. Thus information is one level higher than in a normal business
database: our data corresponds to what is normally called metadata in a
business database. Similarly, we do not concentrate on the underlying database
technology that MetaEdit+ uses, but rather on how we have innovatively used
and in places extended existing leading edge database technology.

In the next section, we will examine related research and the requirements
for multi-user CASE, then give a brief overview of MetaEdit+ and its ArtBase
database. Following that we will describe and evaluate the MetaEdit+
repository according to Bernstein’s framework of repository requirements
(Ber96). Bernstein does not cover locking, and a major source of interest in
MetaEdit+ as a repository is its automatic locking strategies. In the second half
of the paper we thus leave Bernstein and look in more detail at the novel
locking solutions and data structures adopted in MetaEdit+. The success of
these solutions in making MetaEdit+ a multi-user metaCASE tool is then
evaluated briefly according to the criteria of Vessey and Sravanapudi (Ves95).
Finally we conclude and examine some directions for future research.

2 Background

2.1 Related research

To our knowledge there has been no recent empirical research on how
designers use CASE tools co-operatively in practice, although among others
Kraut and Streeter (Kra95) examine designers’ communication in a wider
organisational setting. Research on communication within a design tool has
focused on synchronous design mostly at a very early stage of brainstorming.
This research is of course useful, and tools to support it are needed. However,
the activity patterns of designers at that phase differ significantly from those
met during the majority of the life of a design project. The early stage consists of
largely unstructured synchronous brainstorming with generally no fixed
notation, while the later stage sees more structured asynchronous design using
specific method notations. These two types of design activity differ so
significantly in their natures that it is unlikely that both could be served well by
one system.

168

In support of the earlier phases, research is ahead of practice; in the latter
phases, practice has tried to rush ahead of research: despite the proliferation of
research prototypes for synchronous multi-user design discussion sessions,
general practice is still to use physical media; in contrast, although little interest
has been paid to multi-user functionality in the design development phase, at
least simple multi-user CASE tools have been taken into use to a fair extent.
This perhaps reflects the fact that it is possible to build a simple multi-user
CASE tool with a good knowledge of a programming language and database,
without investigating the fundamental concepts of CASE. However, attempts to
make more sophisticated CASE tools multi-user seem to founder: in particular
many of the few manufacturers who have announced such metaCASE tools
have later withdrawn them (Paradigm+, Excelerator/Customizer, ASTI
Graphical Designer / MethodBuilder). Similarly, it appears to be easy to make a
simple single user metaCASE research prototype: no end of examples can be
found, but these are almost never developed into full functionality multi-user
metaCASE environments.

Apart from MetaPHOR, three other significant research projects have
worked on extending CASE and metaCASE technology with possibilities for
computer-supported collaborative work (CSCW). The first is the work of
Grundy and Venable (Gru96b), which includes the CoCoA language for
modelling methods, the MViews class framework providing the basic building
blocks to make a CASE tool, and the C-MViews extensions which allow multi-
user CASE (Gru96a). Currently, these are not however integrated into a single
functioning environment, although several prototypes combining two of the
three components exist. Their approach to CSCW is to merge change histories:
the user is informed when other users’ changes are automatically merged into
the state of his models. Some changes cannot be made automatically, in
particular there are two important and frequently occurring types of conflict,
where the user must be asked for help in how to perform the merge. Whilst
MViews could be viewed as having some measure of metaCASE functionality,
it is more appropriate to describe it as a library to help CASE tool builders.

The second research project, at Nokia corporation, has produced TDE
(Tai97), a CSCW design environment that includes some CASE functionality
and the possibility of changing the methods supported. It allows near
instantaneous updates of design data between multiple users using a special
notification server they have developed, which runs in addition to the
underlying ObjectStore database: the normal transaction protocol in ObjectStore
is far too slow to use for such fast updates of models between users. Whilst the
CSCW implementation is strong, the CASE functionality is limited to that of
flow-charter type tools: any kind of relationship can be drawn between any
kinds of objects, and there is no code generation. Methods can be changed from
outside TDE using a textual language, but this includes only the basic ERA
concepts and thus represents at best significantly limited metaCASE
functionality. Whilst TDE is undoubtedly useful within a single corporation
with a single method, and represents an important move away from the many
CSCW drawing tools towards synchronous CSCW CASE, that move cannot be
said to have been completed yet.

169

The third project, a prototype multi-user co-ordination and negotiation
tool for software engineers, was developed in the CoNeX project (Hah91), based
on the experimental DAIDA environment. Although the CoNeX tool still
needed ‘further refinement’, it would be possible to use it to record design
rationale synchronously among several users.

In addition to these, a simple fixed-method workflow CASE tool was
developed in Smalltalk in (Bec94). Their initial implementation used an
RDBMS, but this was found to be very difficult to work with, requiring
duplication of many data structures: one version for actual use and another
relationalised version for the database, leading to large amounts of code just for
these and maintaining consistency between them. They found the move to a
product similar to ArtBase very easy, and it solved the problems stated and
provided many benefits.

There also exist several databases which provide some existing CASE
editors and support for building new CASE editors for other methods. These
cannot be regarded as metaCASE environments, because of the requirement to
write program code in order to implement the tool functions of the new CASE
environment. Such databases include Maestro II (Mer91) and GOODSTEP
(GOO95). ConceptBase is a deductive temporal repository which also has some
basic CASE functionality. It implements basic graphical CASE support, but the
graphical representation information is not stored in the repository, and
symbols are limited to one visible label, which must be unique. Further, it
requires that the whole repository fit in main memory, and multi-user support
is limited. Lincoln (previously IPSYS) ToolBuilder has a multi-user repository
solution for CASE with the possibility to configure the methods supported.
Methods are configured by using three different proprietary textual languages.
Whilst this can be considered as metaCASE, the time taken to specify a new
method is an order of magnitude larger than in MetaEdit+, and made more
difficult by the separation of the metaCASE and CASE components into
separate tools, making testing and correcting a lengthy process of exporting,
compiling, and linking the new metamodel to the CASE tool each time. This
involves all users exiting, upgrading their CASE tool, restarting it and logging
in to the repository again.

2.2 Requirements for multi-user (meta-)CASE

Vessey and Sravanapudi (Ves95) provide an extensive set of references and
motivation on the requirements for multi-user CASE. They divide the needed
functionality into taskware (basic CASE functionality, no communication
necessary), teamware (CASE information sharing, access control and
monitoring), and groupware (non-CASE communication, time and meeting
management). They exclude taskware from their investigation of collaboration
support in existing CASE tools; the absence of communication places it outside
their field of interest. We agree with their opinion that most groupware
functionality ‘could be provided by generalized, task-independent packages
(e.g. electronic mail, bulletin boards, calendaring capabilities)’. Thus the most

170

prominent needs are for teamware, in particular the ability to share
information, with concurrency control ‘to resolve conflict and support tightly
coupled group activities’. They perceive groups as working most frequently in
asynchronous mode, but also sometimes needing to access shared resources at
the same time.

Newman-Wolfe et al. (New92), writing about the Ensemble concurrent
graphics editor, sum up the desired behaviour for collaboration in editing thus:
“sharing should be as transparent as possible to the user, yet details of that
sharing should be available if desired”. This is the guiding idea we have
followed in implementing the concurrency behaviour of MetaEdit+. Chen et al.
(Che93) include as the first requirement for a software engineering database
that there should be consistency within a transaction: “Data changes due to a
transaction are not visible until the transaction has successfully committed”.

An important point to consider for a CASE repository is the behaviour
that designers are used to: a prime rule of human computer interaction is to
avoid unexpected behaviour. Designers are often programmers too, and
programming collaboration tools in general have an atomic transaction concept,
e.g. SCCS and Envy. Thus the same atomicity should be observed in a CASE
repository. The workaday world is suggested as a paradigm for CSCW design
(Mor90): in other words, the work practices in use before computerisation
should be those followed (with improvements) in the computerised support.
Before multi-user CASE tools — and in many cases even after their introduction
— designers worked on their designs largely alone, and the end product of each
mini-cycle of design and improvement was released to colleagues. Thus the
interface that each designer worked with was a paper version of another
colleague’s work, which became out of data over a period of days to weeks,
before being replaced by an updated version. This suggests that there is little
need for synchronous updates, but a constant need to view the most up-to-date
released version of someone else’s design, even if they are currently changing
that design. This view is endorsed by Marmolin et al. (Mar91) who conclude
that in design work the need is especially for asynchronous co-working:
synchronous co-working does not seem to be important. Newman-Wolfe’s
requirement for availability of details would motivate the low-key display of
information that that design is being updated, and availability of more
information about e.g. who is updating it.

2.3 MetaEdit+

MetaEdit+ is a full metaCASE environment that supports both CASE and
metaCASE for multiple users within the same environment. It supports and
integrates multiple methods and includes multiple editing tools for diagrams,
matrices and tables. It was developed in the MetaPHOR project, which had
earlier developed the single user MetaEdit metaCASE tool (Smo91). Figure 1
shows the architecture of MetaEdit+, which is client-server with the server
containing a central MetaEngine and various tools. The heart of the MetaEdit+
environment is the Object Repository. The repository is implemented as a

171

database running at a central server: clients communicate only through shared
data and state at the server. All information in MetaEdit+ is stored in the Object
Repository, including methods, diagrams, matrices, objects, properties, and
even font selections. Hence, modification of system designs (or methods) in one
MetaEdit+ client is automatically reflected to other clients on commit,
guaranteeing consistent and up to date information. The Object Repository
itself is designed to be mostly invisible to users. The use of the repository is
visible only when a user starts or exits MetaEdit+, opens or closes projects, and
commits or abandons transactions.

 FIGURE 1 Architecture of MetaEdit+

A repository is composed of projects, each of which contains a set of graphs that
describe a particular system, and possibly some metamodels. Figure 2 shows a
partial view of the structure of the repository. Project1 contains only types,
which are implemented as Smalltalk classes: several graph types, each of which
uses several object, relationship and role types, each of which uses several
property types. Project2 contains only instances of types, i.e. graphs that contain
objects that have properties. These are instances of types defined in Project1: for
instance, Graph1 is an instance of GraphTypeA. Project3 contains both types

172

and instances, with an example shown of Graph4 being an instantiation of
GraphTypeD. Omitted from the figure for the sake of clarity are
representations: each graph instance may have several representations, for
instance as a graphical diagram or as a matrix, of its conceptual contents.
Similarly, objects, relationships and roles have representations which are stored
within the appropriate graph representation. Opening a project reads all the
graphs in that project, so they are visible to users e.g. in browsers. However, not
all objects, properties etc. are read: these are only read as they are needed, e.g.
when they are being displayed in a graph which the user opens. Objects are
cached when read, and thus are only read once per transaction over the
network: performance after that initial read is identical to non-persistent
objects.

Project1

Project2

Project3

Graph1

Graph2

Graph3

= persistent object

= contains

Object1

Object2

Object3

Property1

Property2

Property3

Repository

GraphTypeC

GraphTypeB

GraphTypeA

ObjectTypeC

ObjectTypeB

ObjectTypeA

PropertyTypeC

PropertyTypeB

PropertyTypeA

= instance of

Types

Types

Types

Graph4

GraphTypeD

 FIGURE 2 Structure of the repository (abridged)

On a lower level, each project exists as an area in the repository. Each persistent
object is actually persistent in one particular area. MetaEdit+ stores in each area
one persistent ‘project’ object, which simply acts as a root by pointing to all
graphs in that area: from the graphs one can follow on to read all other parts of
model data in that area. Projects thus directly contain only graphs. Normally
opening a project loads all the graphs and their identifying properties and adds
them to the list of graphs visible to the user. Users may open several projects,
thus loading all their graphs: the browsers allow filtering of graph display by
project (Kel97b). One project is chosen as the default project where newly
created graphs go: this can be changed at any time. This reflects the general
pattern that users work on a single project at a time, but may be simultaneously
part of several ongoing projects, and wish to consult or reuse information from
previous projects.

Objects from one area may be reused in a graph in another project, even
though they are in a different area from that graph. When such a graph is

173

opened, the project area containing that object is opened quietly and only that
object is loaded: the other project is not considered as being open, i.e. the graphs
of that project are not loaded and thus not visible in browsers. Similarly, if a
project is opened that contains models but not their metamodels, the area of
those metamodels will be opened quietly in the background, so that the
metamodels from the other project are available, but the graphs from that
project are not read. In this way MetaEdit+ allows free linking of data between
projects without leading to the situation where accessing objects rapidly leads
to opening and reading all data in all projects.

2.4 ArtBase

ArtBase is a library of classes which add persistence to Smalltalk objects, plus a
separate Smalltalk server program (Art93). The server is the same for all
ArtBase applications. ArtBase has been tested in various applications in both
industrial and public sector settings, with hundreds of simultaneous users
accessing the same repository. The work required by the client application
programmer is small, as there is no separate database sublanguage. The only
calls necessary are to make an object persistent; to increase performance it is
also normal to mark objects as needing to be saved when they have been
changed. This is a much smaller amount of work than is generally needed even
for an OODBMS, and represents a tiny fraction of the code needed for
interfacing with a relational database: see e.g. (Bec94).

ArtBase automatically implements optimistic concurrency: transactions
are only allowed to commit if they do not conflict with reads and writes of
other overlapping transactions that have already committed. Thus the
repository is guaranteed consistent automatically. To avoid users having to
abandon their work in transactions, ArtBase also allows persistent concurrency:
objects can be read, write or exclusive locked before they are operated on, thus
preventing operations that would later cause a transaction to be unable to
commit.

ArtBase transactions are fully ACID, although some of the constraints can
be relaxed, for example by turning off checking of read-write conflicts. ArtBase
supports the highest degree (3) of consistency, as defined in Gray et al. (Gra76):
reads are repeatable within a transaction, i.e. the value read will not change;
changes are only visible to other users when committed; all writes from a
transaction are committed together; and users cannot overwrite data changed
but not yet committed by another user.

A similar approach to that used in ArtBase was taken by Riegel et al.
(Rie88) in the Alltalk system. There the Smalltalk object engine was changed to
calculate from a transitive closure from the database which new objects needed
to be stored in the database, and to recognise from assignments when an object
had been changed and needed to be updated in the database. However, Alltalk
was not commercially available, and the article states that there was no support
for locks or other mechanism for controlling sharing of data.

174

There have been other commercial products similar to ArtBase, but none
available in 1993 (when MetaEdit+ development began) treated classes and
metaclasses as first class objects and allowed free linking between any objects.
OODBMSs such as GemStone required maintenance of the schema to be
specified in both Smalltalk and their own proprietary schema language: we
would thus have been forced to keep two separate descriptions of the schema
and maintain their consistency each time any change was made to metamodels.
Chen et al (Che93) evaluated GemStone for software engineering, finding that
its concurrency support was poor: if one user made a change and committed,
no other user could commit any change. To see the other user’s changes, users
had to first log out and log back in again (this has since been improved).
Another possibility, Distributed Smalltalk (Ben90) was ruled out because the
implementation did not allow class changes to be propagated to other users,
rendering class-based metamodelling impossible. More recent versions of many
of these environments may have overcome some of these drawbacks.

Whilst ArtBase represents leading-edge technology in terms of object-
oriented data storage, it does not in itself form a repository in the sense of
(Ber96), but may serve well as the underlying database for such a repository, as
we use it in MetaEdit+. In the next section, we will examine to what degree
MetaEdit+ measures up to Bernstein’s description of a repository.

3 The Repository: A modern vision

Bernstein (Ber96) describes requirements for a repository, based partially on the
current state of the art and partially on desires for further developments. We
will use his article as the basis for description, discussion and evaluation of the
MetaEdit+ repository. Whilst the purpose of this article is not to describe a
generic repository as such, a metaCASE environment forms a kind of repository
itself, specialised for dealing with information systems models and methods.
MetaEdit+ extends this idea beyond normal CASE data to include methods and
models for business process engineering and systems architecture, thus further
approaching the idea of a generic repository.

Bernstein lists several different kinds of situations where a repository is
needed, and MetaEdit+ falls into his second category: data integration support
for high-end CASE tools. Thus the MetaEdit+ repository provides this support
to the rest of the MetaEdit+ environment, and through that to its end users.

This separation into ‘repository’ and ‘rest of the environment’ is based on
Bernstein’s understanding that a repository involves more than just data
storage, but does not itself form a total application. Thus some higher level
functionality and even tools are considered as belonging to the repository, some
tools are considered as being closely related to the repository, and other tools
are considered as forming the application that uses the repository. In MetaEdit+
the repository, in Bernstein’s usage, consists of the data stored at the server, the
server itself, the MetaEngine at the client and some generic tools at the client.

175

These generic tools are those that operate only on conceptual data, not
representational data. Thus the diagram, matrix and table editors are
considered as being part of the MetaEdit+ application — and indeed it is in
these that a user spends most of his time in CASE work — but most other tools
are either part of or related to the repository.

Bernstein describes the repository architecture, the repository engine,
generic repository tools, and tools using the repository. We will look at those
four areas and the requirements Bernstein has for each, and see how
MetaEdit+’s repository answers those requirements.

3.1 Repository system architecture

The architecture consists of an information model, used by the application to
interpret the data in the repository database and its behaviour; a repository
engine in the client which abstracts the functionality of reading and writing to
the repository away from the main client application, and a repository
database, which is the database system on the server, including the data stored
and the server program. We will examine each of these as it exists in MetaEdit+.

3.1.1 Information model

MetaEdit+ uses the GOPRR model for its models and metamodels. GOPRR
deals only with conceptual data, so each editing tool adds its own set of classes
to specify how representational data is stored and behaves. The MetaEngine in
MetaEdit+ includes the GOPRR classes, and also the abstract superclasses for
representational data, thus significantly reducing the work needed for each
editing tool, and also making the editing tools consistent.

3.1.2 Repository engine

ArtBase in the client consists of a number of classes that implement the
repository engine, making reading and writing data transparent to the
application, and reducing other database operations such as locking or
committing to simple single API calls. In addition, MetaEdit+’s MetaEngine
adds some high-level operations which provide consistent behaviour for both
data and tools in MetaEdit+. A good example is the opening and locking of
graphs in editors, which is implemented in one place in a few lines of code in
the MetaEngine, and yet handles the locking and opening of any graph in any
editor, and even the disabling of those menu items in each editor which could
not be used because the user does not hold a lock for editing that data in that
graph.

3.1.3 Repository database

The ArtBase server program is a normal Smalltalk program that runs on a
server machine: platforms supported include most Unixes and Windows 3.11,
95 and NT. The clients and server communicate through sockets, although if
sockets are not available it is also possible to use a shared file for
communication. The data is stored as a set of files divided into a directory for

176

each project area in the database. Project areas can be distributed, so that they
are stored closest to the clients that use them most often: the only requirement
is of course that the server and clients must be able to access the files, e.g.
through mounting the directory via NFS or Samba.

3.2 Repository engine

Under this heading we cover the issues of object management, dynamic
extensibility, relationship management, version management and configuration
management within the MetaEngine of MetaEdit+.

3.2.1 Object management

While most CASE tools until recently have used relational or network
databases, these lead to problems with newer methods. Older structured
methods in general required the user to perform extra work in assigning a
unique key to each object (e.g. a Process number in a Data Flow Diagram), but
newer methods, e.g. for object-oriented design, are better supported by an
object-oriented database. The problem is similar at the level of the underlying
database: it is important for a repository to read and write objects, not records,
rows or entities, to avoid the burden of constantly translating between the
different representations. As Bernstein puts it: “A repository that manages
objects in a manner conforming to the underlying object model is easier to use
and integrate with tools designed for that object model, compared with
repositories that are integrated through an adapter layer”. The ArtBase
database is a totally object-oriented extension of Smalltalk, keeping everything
as objects and simply allowing them to be persistent. It thus goes one step
further than an OODBMS in removing the adapter or interface layer between
the program and its database.

3.2.2 Dynamic extensibility

This means it must be easy and efficient to add new type definitions and extend
existing ones. It can be viewed on two levels: it should be easy to 1) extend the
repository to meet the requirements of a new tool, and 2) create new object
types and instances immediately in an existing repository-enabled tool. In
(Kel94b) we showed how simple it was to extend MetaEdit+ with a new tool, a
matrix editor: the information model, repository engine and database did not
need to be changed at all. The only additions were the editor itself and classes
for its representations, which were both able to inherit or use much code from
the MetaEngine’s generic behaviour for tools. The creation of new object types
and their testing by creating new instances is simple in MetaEdit+: (Kel96)
describes it in detail. Briefly, MetaEdit+ uses a simple form-based GUI for
creating types, in contrast to the textual metamodel programming languages
used in most other tools. Further, to our knowledge MetaEdit+ is the only
metaCASE environment where new types can be instantly instantiated and thus
tested: all other tools require some kind of export-compile-link-run cycle to

177

upgrade the separate CASE tool with the new type defined in the metaCASE
tool.

3.2.3 Relationship management

Bernstein correctly observes that relationships form a large portion of data in a
repository, and are much more complicated than in traditional databases.
MetaEdit+ is no exception. There are two basic kinds of relationships, those
within a graph between objects, and those between graphs, such as explosion,
decomposition, object reuse and property sharing. Both kinds have been a
significant area of research in designing the information model of the
MetaEdit+ repository. The separation of two distinct natures of relationships
within graphs was shown in (Kel95) to improve both the conceptual model and
the implementation performance. The various relationships between graphs in
CASE, previously used haphazardly in different tools, are analysed and dealt
with in a coherent way as described in (Kel94a). In particular the paper
emphasises the new kinds of relationships that occur when objects and
properties are reused in different graphs: this is discussed further below.

3.2.4 Version management

As Bernstein recognises, version management is significantly more difficult in
an object-oriented repository than in old file-based relational systems. When
creating a new version of an object, we must decide whether to create new
versions of the other objects linked to this. For example, when we create a new
version of a DFD graph, should we also create new versions for each of the
objects in that graph, and even for each of the properties of those objects.
Bernstein is forced to leave the question open: versioning complex objects is still
an active research topic of its own, and no clear, easily applicable solutions have
yet been found. ArtBase automatically stores all versions of all objects, but does
not address the issue of complex object versioning, in other words it remembers
which objects were contained in version 3 of a graph, but does not remember
which versions of those objects were current then. A Master’s thesis project
(Pyy94) has produced a possible design for versioning of complex objects in
MetaEdit+, but this has not yet been implemented.

3.2.5 Configuration management

Configuration management according to Bernstein is the grouping of versions
into coherent units. This is somewhat redundant in a CASE scenario, where the
coherent units are already defined in the form of projects and graphs: other
more generic repositories do not have such a helpful and easily identifiable
aggregation structure. Versions and configurations can lead to additional
complexity when we also consider types: (Che93) and (Ska86) discuss problems
of versioning of types and its effect on their instances. ArtBase supports basic
versioning of all types (classes), remembering which version of a class an object
instantiated, and automatically performing the basic necessary changes to
upgrade that instance to a newer version of the class when it is read later (lazy
updates), e.g. removing attributes or adding new empty ones. MetaEdit+

178

supplies the additional functionality needed for updating instances to fully
conform to the type definition, for instance by filling in new empty attributes
with properties of the correct type holding their default initial value.
Consistently with ArtBase, this is performed lazily, only when that attribute is
read. This removes the need to update all instances of a type when that type
changes which renders many other databases impractical for metaCASE tools.

However, as with version management, this is clearly an area where
MetaEdit+ is currently lacking, and there is a need for a comprehensive solution
covering both to provide proper support for large, long-term projects.

3.3 Generic repository tools

Bernstein divides tool support into those functions that operate at a fairly low
level, generically, with semantics left free for the user to decide, and those that
operate on a higher level, with more defined semantics. This subsection
describes the first set, including browsing, scripting, import/export and
extensibility, and the second set is covered in the next subsection.

3.3.1 Browsing

In addition to the editors etc. provided in an application, users need the ability
to browse the repository contents in a generic browser. MetaEdit+ provides two
such browsers, one viewing information on types and by type, and the other
viewing information on graphs and by graphs, i.e. using instantiation and
aggregation as their main principle. Both browsers allow restriction of the
viewed objects by project, by metatype and by wildcard strings on properties
and types. They are described in more detail in (Kel97b).

3.3.2 Scripting

MetaEdit+ provides a high-level reporting language and report writing tool
which operates on the GOPRR model data in the repository. Reports can be
written by typing or by using the context-sensitive menu-driven editor: they
can then be stored in the repository and run on graphs. Bernstein limits this to
simple code generation (MetaEdit+ comes with reports for Java, Delphi, C++,
Smalltalk, SQL etc.) but its application can be much wider: textual reports,
documentation, checkings and statistics. MetaEdit+ supports documentation
generation with basic text formatting (fonts, styles, sizes), and more
complicated layout can be achieved by using textual formatting languages such
as HTML, RTF or TeX. Reports can easily be written to check for illegal
combinations of property values, classes having several superclasses etc. The
Reporter also provides support for the build tool described later in Bernstein,
because reports can follow links to other graphs and continue running there.
Thus with a single command the user can generate code for a whole system
consisting of many graphs and sub-graphs. The Reporter is described in more
detail in (Kel96).

179

3.3.3 Import/export of metadata

In MetaEdit+ the basic data is CASE models, i.e. one level higher than in the
business repositories Bernstein has in mind. The equivalent of metadata in our
situation is thus actually metamodels. MetaEdit+ supports the export and
import of metamodels via a Type Manager tool. This provides intelligent
assistance in choosing what to export - the user in general would not be able to
take the correct necessary and sufficient set of metamodel components, because
of the complicated relationships between them: if we export a type, we must
also guarantee that all types it needs are exported or already present in the
target repository. Users are however capable of specifying which graph types
they need, and from these MetaEdit+ can calculate which other object,
relationship, role and property types are required. This set of types is displayed
to the user, and for each type the user can view the reasoning that led to its
selection.

When importing types, if any components to be imported already exist in
the target repository, MetaEdit+ updates the existing components rather than
creating new ones (class names are uniquely timestamped with creator and date
to give a basis for object ID over different repositories, thus distinguishing
between a type that has been imported and a type that just happens to have the
same name). This enables an organisation to have several separate repositories
using the same method, and to update that method to all organisations
periodically. One large multinational corporation is already making extensive
use of this functionality in MetaEdit+ over several sites in Europe and the USA.

3.3.4 Extensibility

Research shows that designers rarely use an existing method as it is defined,
but rather extend it, modify it, or even create their own methods on the fly:
Russo et al. (Rus95) found that 85% of method users reported modifying the
method. As Twidale et al. found (Twi93) “Design is viewed by designers as a
creative and personal activity. It involves the development and normalisation
of concepts relating to the artefact being constructed. Designers tend to adopt
flexible and personal notations to express these concepts.” Ter Hofstede and
Verhoef (Hof96) studied experienced designers using Structure Systems
Analysis in the Netherlands, and found that they almost invariably made
significant changes to the method they were using. Fixed-method CASE tools
prevent such changes, and other metaCASE tools make the process sufficiently
long that the intuitive creative element is lost. MetaEdit+ allows fast intuitive
type changes and additions, automatically updating the existing models to
reflect changes where appropriate. The new and changed types are of course
immediately available for testing and use.

Easy extensibility is vital in Bernstein’s opinion: “Making it easier to add
type definitions makes it easier to add more tools, which in turn increases the
repository’s value.” In another article, we have described how MetaEdit+
supports easy addition of new tools (Kel97b) and covered in detail the addition
of a matrix editor (Kel94b). Grønbæk (Grø94) describes a similar approach with
addition of new types of hypertext data and new tools to handle those types.

180

His additions of new types however always requires programming, contrary to
Bernstein’s requirement in the next paragraph.

Extensibility should be supported at a high level: “It is usually
cumbersome to add a new type definition by calling repository engine
functions directly. This may be simplified by offering a type definition language
that compiles into the appropriate calls on the repository engine”. Such an
approach was followed in MetaEdit (Ros95), and also in several other
metaCASE tools. Bernstein would like further sophistication: “Developers can
simplify work even further using an object design tool, which translates a
graphical definition of the type into calls on the engine”. MetaEdit allowed this
from a graphical metamodel diagram via a series of steps using an external tool
(Ros95). MetaEdit+ allows this directly via a form-based graphical user
interface (Kel96); previous metaCASE tools have used textual or sometimes
graphical languages, but these have then needed to be transformed and
compiled before changes have any effect. We have performed an empirical
study (Kel97a) on performance of metamodellers with different representations
of metamodels, specifically diagram and matrix formats, which tends to suggest
that several different representational paradigms would be useful in a
metaCASE environment. Thus we plan to extend MetaEdit+ with alternative
metamodelling representations, whilst keeping the form-based GUI for direct
access to the metamodels.

MetaEdit+ also supports Bernstein’s requirement for modelling of external
dependencies: methods can be extended with concepts for external objects,
modelled as the user wishes. Currently under development is a property type
of external object that would allow live links to Word documents, sound files
etc.

3.4 Tools using the repository

In addition to the above generic functionality, Bernstein requires that a
repository offers tools that use the repository. These tools are distinct from the
actual applications that may be built on top of the repository, although they will
of course often be used by the application. They support the higher level
functions of the user organisation, including reuse, linking, business rules, data
warehousing and team development. In this section, we examine the tools in
MetaEdit+ that offer this kind of support.

3.4.1 Reuse library

MetaEdit+ is designed from its information model up to provide strong support
for reuse. All GOPRR components can be reused, on both type and instance
levels. In particular, graphs display a type-free interface to reusers, allowing
them to be reused across different methods, but still supporting the linking of
interface relationships of an object in a higher level graph to the objects within
the lower level decomposition graph. This allows graphs to be reused in a
similar way to components in CAD, including both black-box and white-box
reuse.

181

Tools support for reuse is built into the MetaEngine, and is thus available
in all editors, browsers etc. This includes the ability to select graphs, objects,
relationships, roles and properties for reuse, selecting them based on their type
or via another component that already uses them, e.g. a DFD Process object
could be reused by viewing a list of all Processes or by first selecting a DFD
from a list of all graphs and then selecting the Process from that graph’s set of
objects. In addition, browsers offer wildcard string-based queries against type
and identifying property. Each GOPRR element can be viewed in an Info Tool,
that shows details of where it is currently used, what links it has to other
components, and which of its own components are reused where.

A graphical Query Editor has been developed for MetaEdit+ (Liu95), and
this can be used to search for reusable components by their structure and
relationships with other components. Queries are defined ‘by example’, by
drawing the desired structure as in a normal graphical diagram, and specifying
types and extra constraints such as Booleans and wildcards on property values.

Reuse should also be informed by information about the design rationale
and history behind the component being reused. MetaEdit+ allows design
rationale to be attached to both conceptual (GOPRR) and representational
components. Design rationale and history take the form of Question-Answer-
Argument graphs, and can be viewed as diagrams or through a list-based
browser (Kai97).

3.4.2 Intertool navigation

Bernstein requires that a user should be “able to move quickly and easily from
one tool to another, following the links of an object.” This idea has been made
more explicit by Brinkkemper (Bri93), who calls it ‘modelling transparency’ and
provides a scale of transparency from 0 (all tools separate, must exit to view
another diagram) to 3 (all tools integrated, free linking between diagrams).
MetaEdit+ supports this in many different ways, and indeed goes beyond
Brinkkemper’s level 3 by allowing metamodelling and modelling in the same
environment. We do not endorse the view that all linking should be free, as in
flow charters and TDE (Tai97); rather, there should be typed links for
relationship, explosions, and decompositions, following the rules of the
method, and these should be supplemented by the ability to freely link any
components with hypertext links, and to navigate amongst components by their
various links (as in the Info Tool).

MetaEdit+ allows hypertext linking and annotation of both conceptual
(GOPRR) and representational components. Several types of links are
supported, including annotations, association jumps, and a traceability link that
can be used to document the flow of information from a requirement through
the various components that answer it in different phases to the eventual low-
level design component that implements it. Hypertext functionality is described
more fully in (Kai97).

From an Info Tool a user can open another Info Tool on one of the
components listed, or can open a normal editor to show e.g. where this object is
used in another graph.

182

3.4.3 Impact analysis

The Info Tool also answers Bernstein’s later requirement for impact analysis:
when an object is changed, the Info Tool can be used to list and open the other
components that use the object, so they can be modified if necessary.

Automation of impact analysis is desirable: “Sometimes a tool can
automate the process of making fixes. For example, when changing the name of
an SQL stored procedure, a tool can automatically replace all instances of the
old name with the new one.” MetaEdit+ takes a more object-oriented approach:
the name is stored only once, and all relevant objects refer to that one name, so
the change affects all those objects without any need for an automatic
search/replace. This reuse works similarly in the case of other GOPRR
components on both type and instance levels.

3.4.4 Business rule management

In addition to normal systems analysis and design methods, MetaEdit+
supports methods for business process engineering, allowing the modelling of
business objects and rules specified in these methods. Looked at from another
point of view, business rules are simply the integrity constraints of a repository,
and thus in our repository map to one level higher, i.e. the metamodels. The
metamodels specify the kinds of models the user can create and the rules the
components in those models must obey. Looked at this way, the requirement is
answered by MetaEdit+’s metamodelling capabilities and extensibility,
discussed above.

3.4.5 Data warehouse management

We are currently developing a WWW interface to MetaEdit+, that would allow
people to browse the repository without needing to run MetaEdit+. The
interface works via a normal WWW server calling a small cgi-bin C program
that passes the request on via a socket to a slightly extended MetaEdit+ client,
which accesses the requested data, formats it into HTML and GIF graphics, and
returns it via the cgi-bin program and server to the user. Because of the
atomicity of transactions, the MetaEdit+ client will return data consistently
from a snapshot of the repository, until it is explicitly told to commit and thus
refresh the state of its cached data. This has the double benefit that the
MetaEdit+ client’s cache will grow to contain the majority of data requested,
improving response times to WWW browsers, and that cached data will not be
requested from the MetaEdit+ server, reducing the load on it.

3.4.6 Team development

“When multiple developers work together on a complex project, they must
coordinate their changes”: Bernstein writes that version and configuration
management, in addition to there standard functions described earlier, are also
the key repository technologies that address co-ordination of work. The
solution he outlines is, he admits, complex, and we feel it to be impractical.
Most CASE users are not experts on the whole project and its
interdependencies, but rather just on their small area, thus requiring all users to

183

be able to specify the interrelations of their work with others and manage their
own co-operation is expecting too much.

For these reasons, in MetaEdit+ we have based our concurrency support
on automatic locking strategies rather than user-handled versioning and
configuration management. The version and configuration management
functionalities are then needed to complement this functionality, rather than
provide it. This relieves designers of the cognitive load of handling concurrency
themselves by always making explicit versions, freeing them to concentrate on
design, whilst at the same time guaranteeing the consistency of the repository.
In the next section, we describe our automatic locking strategies and their
implementation.

4 Locks in ArtBase and MetaEdit+

Bernstein’s description of the repository is a useful framework for analysing
most repository functionality, but there is a rather prominent omission: he
makes no mention of locks, and provides no details of how any other
concurrency mechanism (e.g. versioning) would work. Vessey and Sravanapudi
(Ves95) however cover these concurrency control and consistency maintenance
aspects of teamware in addition to the basic information sharing that forms the
basis of communication on the product between developers. In this section we
will look at how locks are used innovatively within MetaEdit+ to provide a
high level of concurrency whilst maintaining consistency. First we will look at
the basic concepts of locks in ArtBase and their general use in MetaEdit+, and
then at the specific application of these concepts to different kinds of data in
MetaEdit+.

4.1 Concepts

There are three basic concepts which we will use in our explanations: session,
transaction, and lock. We will first describe these, and also classify the different
kinds of data in MetaEdit+ from the point of view of locking.

4.1.1 Sessions

In MetaEdit+ a session is defined as the time from when a user logs in to the
repository to when he logs out. As a rough guide, a session would normally last
for a work day or some part of a day, and is generally the same as the time for
which the user is running MetaEdit+. If a user wants, he can however exit
MetaEdit+ without ending his session: the state of his transaction is saved in an
image file, which he can start later to resume work. In the mean time, as far as
the server and other users are concerned, it is as if he were logged in all the
time, e.g. he still holds all locks held at the point the long transaction image was
saved. Aside from such long transactions, each session is composed of one or
more transactions.

184

4.1.2 Transactions

In MetaEdit+, a transaction is an atomic unit of work: until a transaction is
committed, other users cannot cannot see any of the work done during that
transaction. Users end a transaction either explicitly by committing it or
implicitly by logging out. Transactions also provide a measure of undo
functionality by allowing to abandon a transaction.

At the start of each session, when a user logs in to the repository, a
transaction is started for that user. The repository will remember its state at that
instant, and throughout the transaction the repository will provide information
as it was at the instant the transaction was started. Similarly, none of the changes
the user makes to the information in the repository will be visible to other users
until the user ends his transaction by committing it. At that point all his changes
will be written to the repository, and will then be available to other users, but
only read by them when they next start a transaction (remember that their
current transactions will still be using the information available from the time
they were started).

Thus for one user’s changes to be visible to another user, the first user
must commit his transaction, and the second user must start a new transaction
after that, either by ending his transaction (and thus starting a new transaction)
or by logging in (if he is not already).

The normal length for a transaction will depend largely on the way of
working in an organisation. If there is a need for very fast updates of
information between different designers, transactions may last from half an
hour to an hour. Where such rapid updating is not necessary, users can reduce
the overhead of ending and starting transactions by using transactions of a day
or even longer.

4.1.3 Locks

We have tried to base our user-visible multi-user behaviour on the everyday
world (Mor90). In the everyday world, a person locks something if he wants to
prevent others from manipulating it or removing it. A lock will prevent changes
— your bike wheel disappearing, or your house being damaged — but in
general will not prevent others seeing something (they can look at your bike, or
peer in through your windows). The situation is in many ways similar in
MetaEdit+, but here the main aim is to prevent two people making changes to
the same information, rather than directly destructive acts. Thus if another user
has locked something, you can still look at it, but you cannot change it.

In addition to its automatic optimistic concurrency control, which would
not allow sufficient concurrency for CASE (cf. Bec94), ArtBase supports read,
write and exclusive locks. These locks can be obtained in one of two duration
modes: transaction and session. A transaction lock is automatically released (the
information is unlocked) at the end of the current transaction, releasing it for
other users. A session lock persists over into each new transaction, until the
information is unlocked by some other action. For instance, graphs are session
locked while they are open in an editor, and the session lock is only released
when the user closes the editor.

185

When a user attempts to change a piece of information in MetaEdit+, that
piece of information will first be write locked, and only if that lock was
successful will the change be allowed. A lock is successful if nobody else has
held a lock on that piece of information in a transaction which overlaps with
his. No information is ever read locked.

The interval between a lock being taken and a change being made varies
with different kinds of information: most often it is negligible, but with some
information, particularly graphs, locks are by default taken when a user first
opens the graph, even though he may not change it immediately. The lock
guarantees that he will be able to make changes when he wants to.

4.1.4 Types of data

For our purposes, we can divide data in MetaEdit+ into four kinds:

• conceptual objects, relationships, roles and properties

• conceptual graphs, and representational graphs and their elements

• projects, i.e. collections of related graphs

• metamodels

A representational graph is a diagram, matrix or table. A conceptual graph is
the ‘real’ data that underlies that representational graph: a conceptual graph
may have several different representations. Information stored by a
representational graph and its elements includes the positions of individual
symbols, the order of items on an axis in a matrix, or the widths of the columns
in a table. Correspondingly a conceptual graph stores information about which
objects belong to the graph, how they are connected together via relationships,
and what other graphs they explode to. Graphs in MetaEdit+ are organised into
projects, which consist of a name and a set of graphs. Information may be freely
linked and reused between different projects, but each graph belongs primarily
to only one project.

4.2 Automatic locking strategies

MetaEdit+ automates all the functionality connected with supporting multiple
users: it is perfectly possible to use it without knowing anything of the
underlying principles. This is made possible by a set of automatic locking
strategies: by inferring from user behaviour which operations he is about to
perform on which data, we can lock that data in advance, thus guaranteeing
that he will be able to perform the operations, or, if the lock fails, he can see that
he can only view the data, and can also see who holds the lock.

Thus locking is performed automatically by MetaEdit+ on behalf of the
user, based on the user’s actions. In contrast, starting and ending sessions and
transactions are actions that are explicitly carried out by the user. Why this
distinction? Virtually every action in MetaEdit+ requires some kind of locking
operation or check, and the burden on the user of manually setting and
releasing the locks would be huge. In addition, the safety of the work done in a

186

transaction depends on the correct locks being obtained at the correct times: any
mistake, and the transaction will probably be unable to commit because of
conflicting changes with another user. Transaction commit on the other hand is
a question of dividing work up into semantically coherent units, the general
size of which depends on many situational factors. Similarly, if a transaction
were automatically committed, the user would then lose the possibility of
aborting and thus undoing the actions of that transaction. Thus only the user
himself can decide with any accuracy when to commit.

In MetaEdit+, locks are used differently depending on the kind of
information and the current circumstances. Here we explain the types of locks
and the different locking strategies in use in MetaEdit+. These different types of
lock and locking strategies are designed to reflect the normal pattern of CASE
usage, to give the most efficient and invisible support.

As we have seen, ArtBase already provides the locking primitives. On top
of these we have developed a LockingSystem (Luo96) which interfaces with the
MetaEngine and provides the following functionality:

• It automates the request of various frequently met collections of locks, so that
either all locks are obtained, or none (if some lock is not available)

• It provides handling, reporting and logging of failed locks

• It modifies caching of lock information to improve the default ArtBase
behaviour.

Much locking in MetaEdit+ is handled by the MetaEngine through the
LockingSystem without tool implementers needing to worry about it. Tools and
editors in MetaEdit+ are responsible for locks specific to their representation
data, and call the utility functions of the LockingSystem for these.

We shall now look at how the automatic locking works with respect to
different kinds of data. We shall proceed in order of increasing size, examining
locking for objects, relationships, roles and their properties, then for graphs,
then for projects, where we introduce a new multi-user persistent collection.
Finally we shall examine the special locking solutions required for metamodels.

4.2.1 Objects etc.

Individual objects, relationships, and roles, and their individual properties are
locked only when the user explicitly opens them in a property dialog. When a
user opens a dialog on an object’s properties, MetaEdit+ attempts to lock all that
object’s properties, so they can be changed. If one or more of the locks fail, then
no locks are taken, and the user can only view the properties in the property
dialog: the OK button will be greyed. If all locks were obtained, the user will be
able to press the OK button to accept his changes. The reason behind locking all
properties and not just those that are changed is two-fold. Firstly, we want to
take the locks when the property dialog is opened, before the user starts to
make changes, so he can see straight away whether his changes would be
accepted. Secondly, the information in the various properties is normally
semantically interlinked, even though there are no links in the actual data: the
range of semantically correct values in one property of an object depend on the

187

values of the other properties. If only changed properties were locked, two
users could make changes to non-intersecting subsets of the properties with no
lock conflicts, but resulting in a semantically inconsistent state of the objects’
properties.

4.2.2 Graphs

When opening an editor on a representational graph, MetaEdit+ will
automatically try to obtain locks both for the representational graph, and for the
underlying conceptual graph. The success of these locks determines which
actions the user may perform in that editor: if one or both locks fail, the editor
will still open, but some of the menu items will be greyed, and other e.g. mouse
operations may have no effect. The conceptual objects etc. and representational
elements within the graph are not locked: the conceptual objects are thus still
free to be edited by other users who access them via an editor without locks on
this graph, or via any other graph or place they are reused. In contrast,
representational elements are not reused, and thus cannot be reached and
edited other than via an editor on this representational graph. The editor only
allows modifications to representational elements if the lock on the
representational graph is held, thus the representational elements are
effectively ‘locked’, but without the overhead of explicitly locking each one of
them.

For instance, if a diagram is opened and locked successfully, but the
conceptual graph is not able to be locked, the user will be able to move symbols
around in the diagram, but not be able to add new objects or relationships to
the graph. He will however be able to add a symbol for an object that already
exists in the conceptual graph, or show a relationship that already exists there.
If neither lock were obtained, the user’s actions will be restricted to scrolling,
zooming, viewing selected types, and editing the properties of the objects etc. in
the graph. Lock information in editors is visible through the menu bar, and the
user may view further information about who holds any locks which he was
not granted.

If a user knows he is opening a graph for viewing only, he can specify this
while he opens it, and he will then not be granted any locks and will be unable
to modify it. He can of course reverse this decision later and open it again
normally, thus attempting to gain the locks.

4.2.3 Projects

One of the most difficult aspects of implementing locking in MetaEdit+ was
projects. Each project stores a collection of all the graphs it contains: many users
may simultaneously (i.e. in overlapping transactions) want to add a new graph,
and therefore need to write lock and modify the collection itself. The traditional
solution to such problems of shared collections has been to use a B-tree (or
similar), and an implementation of B-trees already existed in ArtBase. However,
the B-tree structure only becomes efficient once the number of leaves becomes
large, yet at the start of a project, when new graphs are being added at the
greatest speed, the collection is initially empty. The largest natural number of

188

graphs for a project is well below 100, thus a B-tree approach, where a typical
node size is 50, would be inefficient in terms of storage space and performance.
Similarly, the performance of a general-purpose B-tree is at its worst if keys are
inserted in an ascending order: splits occur often and 50% of the storage space
are wasted. Logical OIDs, however, form the only possible key for graphs in
general, and these are allocated in ArtBase in an ascending order, as is general
in object-oriented databases.

More seriously, index structures like B-trees have proved to be a serious
bottleneck of the system if they are updated by multiple users simultaneously.
Several techniques to improve concurrency and recovery have been proposed
and tested (Sri93). Nevertheless, the implementation of these algorithms is
difficult and frequent modifications still reduce the performance of the system
significantly. In particular, concurrency appears to be at its worst when the
collection is small, whereas our need for concurrency is highest then, as many
users create many graphs in a new project.

As projects are not expected to grow to contain much more than 100
graphs, and we have no need for fast key access — and indeed no useful source
of keys — we do not benefit from the positive sides of B-trees, and are seriously
affected by their negative sides. To solve this problem I designed a new kind of
multi-user collection. It may be interesting to note that Beck and Hartley (Bec94)
also found the need to extend the ArtBase-like library of classes they used in
their fixed-method CASE tool with new persistent collection classes. Their
additions were however simply automatic marking of the collection as changed
when elements were added or removed; my MultiUserColl includes this but its
main purpose was to address a somewhat more complicated problem.

The basis of the MultiUserColl collection is a persistent array containing N
elements, where each element is itself a persistent object, called an Insulator. An
Insulator is a simple object, which holds one other object, or holds nil if it is
currently unused. Insulators are persistent in their own right, and can thus be
locked independently of each other and of the parent MultiUserColl. The
MultiUserColl also has a ‘chain’ variable which is initially nil, but can hold
another MultiUserColl, thus forming a chain of MultiUserColls to support more
than N members in the collection. Initially a new MultiUserColl contains an
empty Insulator in each place.

189

1

2

3

4

5

Insulator

Insulator

Insulator

Insulator

Insulator

chain

nil

nil

nil

Graph A

Graph C

Graph D

Insulator

Insulator

Insulator

Insulator

Insulator

nil

nil

Graph F

nil

nil

MUC

*

1

2

3

4

5

chain

MUC

= persistent object

= aggregation

* = locked

 (instance variable)

 FIGURE 3 A MultiUserColl after several operations.

The figure shows a MultiUserColl as seen in one client after several transactions
have added graphs (Graphs A to F, which caused a second MultiUserColl to be
chained on to the first) and also removed some graphs (as seen by the empty
Insulators at slots 2 and 5, where Graphs B and E were). The Insulator at slot 2
is locked but empty, because another user has added a graph (say Graph G)
there in an overlapping transaction: this client cannot see that graph until after
commit, but can see that the slot is locked, and thus cannot be used.

Iterative and collection operations on the MultiUserColl are redefined so
that they operate only on the held values of non-empty Insulators, and so that
they invisibly follow on to any chained MultiUserColls. Thus the standard
collection API of the MultiUserColl behaves identically to other collections,
hiding the implementation details from application programmers. When
adding objects, the MultiUserColl scans through its Insulators to find the first
empty Insulator for which an attempted lock is successful. It then places the
added object into that Insulator. If there are no empty lockable Insulators in the
chained MultiUserColls, it attempts to lock the last MultiUserColl to chain a
new MultiUserColl to it, and add the object in there. If the chaining lock fails, an
error is reported. In addition, a MultiUserColl allows pre-locking of the next
free Insulator slot (including automatic chaining of a new MultiUserColl if
necessary), to ensure that an approaching add operation will be able to execute.
This enables better error handling, as the user is told right at the start of

190

attempting to create a new graph that the operation cannot succeed, and is
aborted. Removal (e.g. deletion of a graph) is simpler: the relevant Insulator is
locked and reset to empty; if the lock fails, the user is informed that the graph
cannot be removed by him; in fact, the graph must have been removed already
in an overlapping transaction (the only possible situation where this user could
see the Insulator as non-empty and locked).

For example, if we try to add a new graph with the situation in the figure,
Insulator 1 is already used, Insulator 2 is empty but our attempt to lock it will
be refused, Insulators 3 and 4 are used, but our attempt to lock the empty
Insulator at slot 5 will be successful, and we can place our new graph in that
Insulator.

The value of N, i.e. the size of each MultiUserColl, can best be determined
by experience within a particular organisation, first roughly by examining the
number of graphs created within a transaction, and then more accurately by
experimentation with different values of N to set the minimum value that
yields an acceptably low incidence of refused locks when trying to create a new
graph. The use of too high a value of N will merely slow the system down a
little, as a larger MultiUserColl and larger number of Insulators must be read
than necessary. In practice, we have used a value of N=10 with 9 intermittent
users of a shared repository for a year, and not once has a lock been refused,
even when on several occasions most users have been logged in and modelling
new data in earnest.

Because the current implementation and value of N have proved sufficient
for our needs, we have not further extended the MultiUserColl to allow even
more concurrency. One possible simple extension would be to make add
operations attempt to grow the MultiUserColl by chaining before it is totally
full — say when it is 80% full. This would allow more time for the new chained
MultiUserColl to be committed and made available to other users, who in the
meantime would be using the last 20% of Insulator slots to store their new
graphs.

4.2.4 Locks for metamodelling

Modifying information on the type level differs significantly from instance level
changes, in that changes made to types affect every instance of that type in the
repository. In a large multi-user repository, it is a practical impossibility to lock
every instance of a type, and the situation becomes even more complicated
when we take into account links between types — for instance, a change to a
property type will potentially affect its subtypes, and also any other types that
use that property type, and of course all their instances. In contrast, changes on
the instance level affect only immediately related instances, which form a
sharply defined and easily calculated and reachable set. This is as true from a
user’s perspective as it is on a technical level: it feels somewhat odd to have the
types you are instantiating change under your very nose, whereas it is
somehow more logical that an instance object made by your colleague may
change.

In addition, changes to types may fundamentally change the whole
method and way of working which other users are following, and should

191

therefore be treated as more dangerous than instance level changes. Different
companies follow different practices with regard to type level or comparable
schema changes in any kind of database: some forbid all but the system
administrator from making such changes, others have a single user or group of
users who specialise in metamodelling and are authorised to make changes, still
others (especially small companies) may allow anyone to make changes.

There may also be different policies or customs related to database
changes: in old relational databases, all other users were excluded from the
database while the schema was updated. Whilst we can now offer better
possibilities than this, some companies may decide to perpetuate this way of
thinking: it does after all protect the user from the unsettling feeling of seeing
the very method he is using change. There is also the question of how much it is
possible to have several simultaneous metamodellers: can they co-ordinate their
work effectively, or will their changes — even if technically correct — result in a
garbled mess for themselves and their users. Setting the bounds within which a
metamodeller may work can be problematic: his types may all be defined in one
bounded area, e.g. a single project, but may then be used in several areas,
overlapping with other projects’ types.

Further, the requirements for simultaneous type level and instance level
users will often change throughout the life of a project: at the start of an ISD
project (following Tol93), most work will be metamodelling with a few example
instance models to test the types; as the method is taken into use there will be
much activity on the instance level, and a few changes to the types; later it may
be decided to freeze the method — even though it may still not be perfect, the
detrimental effect of changes to existing models, and the burden of unlearning
and relearning, outweigh the benefits of the remaining minor corrections that
could be made. Thus the requirements for metamodelling access rights and
locks vary over time within a single project.

Clearly, with all these factors to be considered, many of them strongly
dependent on contingency, usage environment and culture, a single strategy for
type level locking would not be appropriate for the majority of organisations.
We are thus forced to deviate from the simpler ‘single strategy’ solution we
applied on the instance level, and create multiple strategies, allowing the
system administrator to choose which one to apply at any given time.
Obviously, the number of possible strategies should not be too high, as these
settings will be made rarely: we should not overburden the system
administrator with choices of which he has little knowledge or experience.

Starting from end user requirements, there is a clear requirement that
metamodelling access rights should be restricted to a certain set of users,
specified by the system administrator. At no time can any other user carry out
metamodel changes. Our interest however lies more with locking than access
rights: what are the locks that users require?

1. Repository Exclusive
 Reflecting the habits and thought patterns developed in relational databases,

we can require that changes to types can happen only when nobody else is

192

logged in to the repository. This also protects users from the unsettling effect
of types changing before their eyes.

2. Repository
 Considering the danger and wide-reaching influence of type changes, we can

have a single metamodelling lock for the whole repository: other users may
be logged in, but only one user may make changes to types at a time. This
helps solve the problems associated with the web-like nature of metamodels,
which makes coherent simultaneous multi-user modification difficult.

3. Project
 There are several benefits to be gained in general by modelling different

methodologies in different projects, perhaps all using some shared types
from a core project. Thus it is useful to be able to lock projects individually
for metamodelling. This allows many users to metamodel simultaneously,
but their work is semantically separated by the project division, thereby
avoiding problems of contention, changes in semantics etc.

The first option corresponds to the situation in the older relational databases,
and also to that in other existing metaCASE tools, to the best of our knowledge.
The second allows the work pattern proposed by Tolvanen (Tol93) and
observed by Russo et al. (Rus95): methods are changed as they are taken into
use. Whilst in a single project with a small number of users it would be possible
to make such changes even if the repository were locked exclusively whilst
metamodelling, with a larger number of users or projects there will be work
continuing within the repository whilst a method is taken into use. Similarly,
when a method is modified between projects, another method in the repository
may simultaneously be in full use by another project.

If there are several projects, it is also possible that more than one method
will need to be modified at a time. This would require the third level of locking,
so that different metamodellers can make changes within different metamodel
projects. A similar situation arises at the start of a project where a large method
is being developed from scratch.

A possible fourth level of locking would be to lock types individually. This
has been implemented in MetaEdit+, and shown to work. However, we feel
that in practice this freedom is both potentially dangerous and also rarely
needed, at least in the foreseeable future. The danger arises when one
metamodeller modifies a type that another metamodeller is starting to use:
whilst we can lock all types that currently use a type, even if we ignore the large
number of locks that will often result, we cannot reasonably lock all types that
might be about to use a type. Whilst MetaEdit+ handles resulting conflicts
without actual errors, resulting metamodels are semantically ‘wrong’ far more
frequently than if there is only one metamodeller per project, and the need for
such high concurrency in metamodelling is dubious.

193

5 Evaluation

Vessey & Sravanapudi (Ves95) evaluate several multi-user CASE tools on the
facilities they offer for task, team and group work. They divide their analysis
into control, information sharing and monitoring (teamware aspects) and co-
operation (groupware aspect). Control covers security and access rights.
Information sharing consists of CASE data sharing, including hypertext and
queries; consistency enforcement; and concurrency control. Monitoring covers
issues of timestamping, marking of creator and modifier, and logging. Co-
operation includes provision of electronic mail and meeting schedulers.

Within each aspect there were several binary questions, each basically
representing a desired functionality. There were different numbers of questions
for each aspect, possibly reflecting the authors’ view on the relative importance
of each aspect. For each positive answer, i.e. piece of functionality present, a
tool received one point in that aspect. The tools performed much better on
information sharing than any other area, with co-operation being the weakest
area: unsurprising, as the authors themselves recommend that it could mostly
be handled by external tools.

We applied the criteria given to MetaEdit+, and the results are shown in
Figure 4. The tools examined by Vessey & Sravanapudi were only fixed-method
CASE tools, for which provision of multi-user facilities is easier than for
metaCASE environments. Even so MetaEdit+, including its method engineering
support, would seem to perform well on the criteria, often performing as well
as or better than the best tool in a category, and even at its worst relative to the
tools examined is only one point behind the best in that category. It is worth
noting that the tools examined supported only structured analysis and design
methodologies, and that the analysis seemed to take a largely relational
database view of concurrency. An important area not addressed in the analysis
is how fine is the granularity of locks, and thus how closely users can work
concurrently: in this area MetaEdit+ would be significantly better than the
CASE tools examined. Similarly, the analysis does not take into account the
unique facilities of MetaEdit+ for several concurrent metamodellers and
modellers.

The scores given for MetaEdit+, however, cannot be directly compared to
those obtained for the other CASE tools. The other evaluations were performed
and agreed on by several people, who were presumably unbiased. Whilst I
attempt to be unbiased, I may still take a different interpretation of some
criteria than the earlier evaluators. Because of these inherent problems and
obvious constraints of space, I do not set down here my justification of every
point given to MetaEdit+. Perhaps Vessey and Sravanapudi, or some other
researchers, would be interested in extending their criteria and tool selection to
cover multi-user metaCASE tools.

194

0

5

10

15

20

25

D
ef

t

Ic
on

ix

S
ys

te
m

A
rc

hi
te

ct

V
is

ib
le

A
na

ly
st

M
et

aE
di

t+

Cooperation

Monitoring

Information
sharing

Control

 FIGURE 4 Collaborative support in some CASE tools and MetaEdit+

6 Conclusions

MetaEdit+ is the first metaCASE environment that supports multiple
simultaneous metamodellers and modellers in the repository. It is based on a
persistent object store for Smalltalk using standard transaction semantics. By
always allowing free reading of data and its fine locking granularity, MetaEdit+
obtains several of the benefits expected from non-standard transactions or other
models entirely without transactions.

MetaCASE environments can usefully be considered as repositories
themselves. We described how MetaEdit+ considered thus met well the
requirements for a repository given by Bernstein. In particular we showed how
the generic functionality of the MetaEngine provided extensive support for
reuse, navigation and change impact analysis throughout the tools, editors and
browsers of MetaEdit+. The high extensibility of MetaEdit+ for both types and
tools was described, including the intelligently-guided metadata import and
export facilities, and flexible scripting language for report, code and
documentation generation.

Bernstein expected concurrency control to be implemented by user-guided
version management, but MetaEdit+ was able to implement it with locks.
Locking was fully automatic, relieving the user of the conceptual burden of
explicitly performing locking, check-in/check-out or versioning. Locking
granularity varied for different kinds of data, allowing a high degree of
concurrency whilst maintaining consistency. A new concurrently updatable
collection data structure was developed, providing high concurrency even for
small collections, where B-trees perform most poorly. This solved the problem
found in CASE work that the collection of graphs grows fastest, and thus has
the highest density of concurrent updates, when it is smallest.

Several locking strategies for metamodel data were provided for the
system administrator to choose between. With the most restrictive strategy,

195

behaviour mirrored that of other repositories and metaCASE systems, with
metamodel (schema) updates only possible when there were no other users
logged in the repository. The strategy with the highest concurrency allowed
multiple normal users and metamodellers to work simultaneously in the
repository whilst still maintaining consistency.

Whilst MetaEdit+ was seen to perform well in its support for collaborative
work even compared to existing fixed-method CASE tools, there remain some
areas which could be extended. Although MetaEdit+ does not need version
management for concurrency, versioning and configuration management per se
is important for CASE users, and should thus be extended beyond the basic
repository snapshots provided currently. Similarly many organisations have a
need for a large number of repository readers, thus work is in progress to
provide a WWW interface to the MetaEdit+ repository.

Currently the repository has not been tested with more than 10 concurrent
users, with which it performed well. The bulk of the load appears to be at the
client, and whilst this would probably be beneficial to scalability, the work done
by the client during commit when large amounts of data have been read is
significant, requiring over a minute for 1MB of data on a Pentium 90MHz. This
effectively rules out short transactions, which might in some situations be
effective; our current experience however suggests an average transaction
length of half an hour is sufficient in practice for teamwork. The reasons for this
slowness at commit lie in the way persistence is implemented in Smalltalk by
ArtBase, and possibly also in its somewhat inefficient data storage. More recent
versions of ArtBase promise to address these problems, and should thus be
tested.

Acknowledgements

I gratefully acknowledge the coding and extensive testing work of Janne Luoma
and Marko Somppi on the integration of the ArtBase multi-user extensions into
MetaEdit+.

References

Art93 ArtInApples, “ArtBASE: Distributed Smalltalk and Object-Oriented
Database Management System,” ArtInApples Ltd., Bratislava, Slovakia
(1993).

Bec94 Beck, Bob, Steve Hartley, “Persistent Storage for a Workflow Tool
Implemented in Smalltalk,” ACM SIGPLAN Notices (Proceedings of
OOPSLA '94) 29(10) (1994) pp.373–387.

Ben90 Bennett, J. K., “Experience with Distributed Smalltalk,” Software —
Practice and Experience 20(2) (1990) pp.157–180.

Ber96 Bernstein, P. A., “The Repository: A Modern Vision,” Database
Programming & Design 9(12) (1996) pp.28–35.

196

Bri93 Brinkkemper, S., “Integrating diagrams in CASE tools through modelling
transparency,” Information & Software Technology 35(2) (1993)
pp.100–105.

Che93 Chen, S., J. M. Drake and W. T. Tsai, “Database requirements for a
software engineering environment: criteria and empirical evaluation,”
Information & Software Technology 35(3) (1993) pp.149–161.

GOO95 GOODSTEP_Project, , “The GOODSTEP Project Final Report,” ESPRIT
Project 6115, http://www.dbis.informatik.uni-
frankfurt.de/REPORTS/GOODSTEP/goodstep.html, University of
Frankfurt, Germany (1995).

Gra76 Gray, J. N., R. A. Lorie, G. R. Putzolu and I. L. Traiger, “Granularity of
Locks and Degrees of Consistency in a Shared Data Base,” pp. 365–394
in Modelling in Data Base Management Systems, G. M. Nijssen (Ed.),
North Holland (1976).

Grø94 Grønbæk, Kaj, Jawahar Malhotra, “Building Tailorable Hypermedia
Systems: the embedded-interpreter approach,” ACM SIGPLAN Notices
(Proceedings of OOPSLA '94) 29(10) (1994) pp.85–101.

Gru96a Grundy, J. C., J. R. Venable, J. G. Hosking and W. B. Mugridge,
“Supporting Collaborative Work in Integrated Information Systems
Engineering Environments,” in Proceedings of the 7th Workshop on the
Next Generation of CASE Tools (NGCT'96), Crete, May 20-24 (1996).

Gru96b Grundy, J. C., J. R. Venable, “Towards an Integrated Environment for
Method Engineering,” pp. 45–62 in Method Engineering '96: IFIP WG
8.1/8.2 Working Conference on Principles of Method Construction and Tool
Support, Atlanta, August 26-28, S. Brinkkemper, K. Lyytinen and R.
Welke (Ed.), Chapman-Hall, London (1996).

Hah91 Hahn, U., M. Jarke and T. Rose, “Teamwork Support in a Knowledge-
Based Information Systems Environment,” IEEE Transactions on Software
Engineering 17(5) (1991) pp.467–481.

Hof96 Hofstede, A. H. M. ter, T. F. Verhoef, “Meta-CASE: Is the game worth the
candle?,” Information Systems Journal 6(1) (1996) pp.41–68.

Kai97 Kaipala, J., “Augmenting CASE Tools with Hypertext: Desired
Functionality and Implementation Issues,” pp. 217–230 in Proceedings
of CAiSE '97, Barcelona, Catalonia, Spain, June 16–20, A. Olivé and J. A.
Pastor (Ed.) Vol. 1250, Springer, Berlin (1997).

Kel94a Kelly, S., V.-P. Tahvanainen, “Support for Incremental Method
Engineering and MetaCASE,” in Proceedings of the 5th Workshop on the
Next Generation of CASE Tools, B. Theodoulidis (Ed.) No. Memoranda
Informatica 94-25, Universiteit Twente, Enschede, the Netherlands
(1994).

Kel94b Kelly, S., “A Matrix Editor for a MetaCASE Environment,” Information
and Software Technology 36(6) (1994) pp.361–371.

Kel95 Kelly, S., “What's in a Relationship: on distinguishing property
holding and object binding,” in Proceedings of 3rd International
Conference on Information Systems Concepts, ISCO 3, W. Hesse and E.
Falkenberg (Ed.), University of Marburg, Lahn, Germany (1995).

197

Kel96 Kelly, S., K. Lyytinen and M. Rossi, “MetaEdit+: A fully configurable
multi-user and multi-tool CASE and CAME environment,” pp. 1–21 in
Advanced Information Systems Engineering, proceedings of the 8th
International Conference CAISE'96, P. Constapoulos, J. Mylopoulos and
Y. Vassiliou (Ed.), Springer-Verlag (1996).

Kel97a Kelly, S., M. Rossi, “Differences in Method Engineering Performance
with Graphical and Matrix Tools: A Preliminary Empirical Study,” in
Proceedings of 2nd CAiSE/IFIP8.1 International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design, EMMSAD'97, June
16–17, Barcelona, Spain, K. Siau, Y. Wand and J. Parsons (Ed.) (1997).

Kel97b Kelly, S., K. Lyytinen, H. Liu, P. Marttiin, H. Oinas-Kukkonen, M.
Rossi and J.-P. Tolvanen, “MetaEdit+: CASE Functionality to Support
Production, Coordination and Organizational Control And Innovation,”
ACM Transactions on Software Engineering and Methodology
(submitted for publication) (1997).

Kra95 Kraut, R. E., L. A. Streeter, “Coordination in Software Development,”
CACM 38(3) (1995) pp.69–81.

Liu95 Liu, H., “A Visual Interface for Querying a CASE Repository,” in Proc.
of the Eleventh IEEE Symposium on Visual Languages (VL'95), Darmstadt
(1995).

Luo96 Luoma, J., M. Somppi, “Concurrency Control in Multi-User MetaEdit+
(Samanaikaisuuden hallinta monen käyttäjän MetaEdit+:ssa),” Master's
Thesis (in Finnish), TKTL, University of Jyväskylä, Finland (1996).

Mar91 Marmolin, H., Y. Sundblad and B. Pehrson, “An Analysis of Design
and Collaboration in a Distributed Environment,” pp. 147–162 in
Proceedings of ECSCW '91 2nd European Conference on CSCW (1991).

Mer91 Merbeth, G., “Maestro II — the integrated CASE system from Softlab
(in German: Maestro II — das integrierte CASE-System von Softlab),”
in CASE Systeme und Werkzeuge, 3e Auflage, H. Balzert (Ed.), BI
Wissenschaftsverlag (1991).

Mor90 Moran, T. P., R. J. Anderson, “The Workaday World as a Paradigm for
CSCW Design,” pp. 318–393 in CSCW 90 Proceedings, ACM (1990).

New92 Newman-Wolfe, R. E., M. L. Webb and M. Montes, “Implicit Locking
in the Ensemble Concurrent Object-Oriented Graphics Editor,” pp.
265–272 in Proceedings of the 1992 Conference on Computer-Supported
Cooperative Work, Jon Turner and Robert Kraut (eds.) (Ed.), ACM Press,
Toronto, Canada (1992).

Pyy94 Pyykkö, A., “Version Control in a Meta-CASE Environment
(Versiohallinta CASE-kuoressa),” Master's thesis (in Finnish), University
of Jyväskylä (1994).

Rie88 Riegel, Steve, Fred Mellender and Andrew Straw, “Integration of
Database Management with an Object-Oriented Programming
Language,” pp. 317–322 in Advances in Object-Oriented Database
Systems: 2nd International Workshop on Object-Oriented Database Systems,
K. R. Dittrich (ed.) (Ed.) Vol. Lecture Notes in Computer Science No.
334, Springer-Verlag, Berlin (1988).

198

Ros95 Rossi, M., “The MetaEdit CAME environment,” Proceedings of
MetaCase 95, University of Sunderland press, Sunderland (1995).

Rup95 Rupnik-Miklic, E., J. Zupancic, “Experiences and expectations with CASE
technology — an example from Slovenia,” Information & Management
28(6) (1995) pp.377–391.

Rus95 Russo, Nancy L., Judy L. Wynekoop and Diane B. Walz, “The Use and
Adaptation of System Development Methodologies,” in Proceedings of
the 1995 International Resources Management Association Conference,
Atlanta (1995).

Sel94 Selamat, M. H., C. Y. Choong, A. T. Othman and M. M. Rahim, “Non-
Use Phenomenon of CASE Tools: Malaysian experience,” Information and
Software Technology 36(9) (1994) pp.531–537.

Ska86 Skarra, Andrea H., Stanley B. Zdonik, “The Management of Changing
Types in an Object-Oriented Database,” pp. 483-495 in Proceedings of
the OOPSLA'86, Norman Meyrowitz (Ed.) Vol. 21 No. 11, ACM Press,
N.Y. (1986).

Smo91 Smolander, Kari, Kalle Lyytinen, Veli-Pekka Tahvanainen and Pentti
Marttiin, “MetaEdit — A Flexible Graphical Environment for
Methodology Modelling,” pp. 168–193 in Advanced Information Systems
Engineering, Proceedings of the Third International Conference CAiSE'91,
Trondheim, Norway, May 1991, R. Andersen, J. A. Bubenko jr. and A.
Solvberg (Ed.), Springer-Verlag, Berlin (1991).

Sri93 Srinivasan, V., M. J. Carey, “Performance of B+ Tree Concurrency
Algorithms,” VLDB Journal 2(4) (1993) pp.361–406.

Sto93 Stobart, S. C., A. J. van Reeken, G. C. Low, J. J. M. Trienekens, J. O.
Jenkins, J. B. Thompson and D. R. Jeffery, “An Empirical Evaluation of
the Use of CASE Tools,” pp. 81–87 in Proceedings of the 6th International
Workshop on Computer-Aided Software Engineering, CASE93, Hing-Yan
Lee, Thomas F. Reid and Stan Jarzabek (Ed.), IEEE Computer Society
(1993).

Tai97 Taivalsaari, A., S. Vaaraniemi, “TDE: Supporting Geographically
Distributed Software Design with Shared, Collaborative Workspaces,”
pp. 389–408 in Proceedings of CAiSE '97, Barcelona, Catalonia, Spain, June
16–20, A. Olivé and J. A. Pastor (Ed.) Vol. 1250, Springer, Berlin (1997).

Tol93 Tolvanen, J.-P., K. Lyytinen, “Flexible method adaptation in CASE
environments — The metamodeling approach,” Scandinavian Journal of
Information Systems 5(1) (1993) pp.51-77.

Twi93 Twidale, M., T. Rodden and I. Sommerville, “The Designers' Notepad:
Supporting and understanding cooperative design,” in Proceedings of
the Third European Conference on Computer-Supported Cooperative Work,
G. De Michelis, C. Simone and K. Schmidt (Ed.) (1993).

Ves95 Vessey, I., A. P. Sravanapudi, “CASE tools as collaborative support
technologies,” CACM 38(1) (1995) pp.83–95.

