

Version 5.5

The Graphical Metamodeling Example

MetaCase Document No. GE-5.5

Copyright © 2018 by MetaCase Oy. All rights reserved

First Printing, 2
nd

 Edition, August 2018

MetaCase

Ylistönmäentie 31

FI–40500 Jyväskylä

Finland

Tel: +358 400 648 606

E-mail: info@metacase.com

WWW: http://www.metacase.com

mailto:info@metacase.com
http://www.metacase.com/

No part of this manual may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including but not limited to photocopying, without express written

permission from MetaCase.

MetaEdit+ is a registered trademark of MetaCase. The other trademarked and registered trademarked

terms, product and corporate names appearing in this manual are the property of their respective

owners.

The graphical metamodeling example

4 MetaEdit+

Preface

The goal of this example is to demonstrate graphical metamodeling in MetaEdit+. Graphical

metamodeling is added to MetaEdit+ to support the early stages of language creation:

designing the basic metamodel that covers the key language concepts and related rules. The

created language design can be imported into MetaEdit+ Workbench and extended with the

metamodeling tools of MetaEdit+ Workbench.

Technically, the metamodeling language is defined as one of the many domain-specific

languages in MetaEdit+ Workbench. Now the domain is designing modeling languages and

generating language definitions to be executed in MetaEdit+.

This example focuses on using the metamodeling language and generating the created

language definition into an XML file. The generated XML will be imported back into

MetaEdit+ Workbench as a modeling language. Please note that certain parts of the example

require you to work “hands-on” to ensure the best understanding of the subject matter.

For exploring the metamodeling example thoroughly, you need to have MetaEdit+ installed on

your machine. If you wish to extend the created language further − add notational symbols,

additional constraints, generators or by modifying dialogs and toolbars for modeling tools −

you should use MetaEdit+ Workbench or the evaluation version, which is available for

download from www.metacase.com.

For further information about MetaEdit+, please refer to the ‘MetaEdit+ Users Guide’,

‘MetaEdit+ Workbench Users Guide’ or our web pages at http://www.metacase.com.

http://www.metacase.com/

 The graphical metamodeling example

Graphical Metamodeling Example 5

1 The graphical metamodeling example

The graphical metamodeling example presents a metamodeling language and its tool support

specifically tailored for designing modeling languages. Strictly speaking, with the

metamodeling language we focus on the basic metamodel, which covers a language’s

concepts, their properties, connections and rules as well as integration between several

languages.

In this chapter we introduce the graphical metamodeling language and its usage scenarios.

Chapter 2 then explains how to use the language via a small example in which we create a

metamodel of a Use Case Diagram. Chapter 3 shows how the created language specification

can be generated and imported into MetaEdit+ Workbench for inspection and further

extension.

In this metamodeling example we will mostly discuss the use of the language for

metamodeling. Because the metamodeling language is implemented similarly to other domain-

specific modeling languages in MetaEdit+, it can be extended using the metamodeling tools of

MetaEdit+ Workbench. This latter part, however, is not addressed in this example although

modifications of this metamodeling language are possible.

Please note that walking through the metamodeling example requires a good knowledge of the

metamodeling concepts of MetaEdit+ and basic knowledge on how to use MetaEdit+. A good

starting point to get this knowledge is the Family Tree example in the ‘Evaluation Tutorial’.

1.1 THE BASIC IDEA OF GRAPHICAL METAMODELING

A graphical metamodel usually covers the basic modeling concepts, their properties,

connections and related rules. In terms of MetaEdit+, these concepts cover the following

GOPRR metamodeling concepts: graphs, objects, properties, relationships and roles our

modeling languages may have.

Graphical metamodeling is helpful at the early stages of language creation when we want to

design the basic language structure and discuss about it with others. A graphical metamodel is

also useful for getting an overview of the language.

During the later stages, language definers will find it becomes more effective to continue

building the language via model examples rather than via the metamodel. This is simply

because practical examples provide the ability to test the language and allow language users to

understand it easier than when using the plain metamodel. Therefore, after having done the

initial language design work graphically, it is normally better to continue by using MetaEdit+

Workbench’s metamodeling tools to implement the complete language into MetaEdit+. This is

achieved by importing the generated XML-based representation of the modeling language

back into the MetaEdit+ Workbench. The MetaEdit+ Workbench is then used to extend the

language further by defining notational symbols, additional constraints, generators or by

modifying dialogs and toolbars for modeling tools.

We should note that graphical metamodeling is not particularly suitable for language evolution

as it is separate from the models made so far. It doesn’t allow so well to test language

modifications with real models. Nor does it allow making changes into notations, generators,

The graphical metamodeling example

6 MetaEdit+

dialogs or toolbar modifications. The metamodeling tools of MetaEdit+ Workbench, including

the Symbol Editor, Generator Editor and Dialog Editor support the whole spectrum of

language design and implementation.

1.2 AN EXAMPLE METAMODEL

Using the graphical metamodeling language, defining domain-specific languages is divided in

three stages. You start by designing the basic concepts and rules with the graphical

metamodeling language and then generate the metamodel into an XML file. Finally, you

import this file into MetaEdit+ as a language definition and can apply it immediately. More

about generating and importing XML type files in Chapter 3.

Figure 1-1 illustrates a sample language specification with the graphical metamodeling

language. This diagram specifies the metamodel of a Data Flow Diagram. The Data Flow

Diagram consists of three basic elements: ‘External’, ‘Store’ and ‘Process’. These are

specified using the Object concept in the metamodeling language. As these three objects have

common properties and similar connections in data flow, an object type called ‘Abstract’ has

been added to the language. This is a supertype of the other concepts. The ‘Abstract’ object is

also marked as an abstract concept in the language by showing the text ‘{0}’.

Figure 1-1. Metamodel of Data Flow Diagram

The metamodel in Figure 1-1 shows also properties of the modeling elements. For example,

‘Abstract’ has two properties: ‘Name’ which is a string that has a unique value within a data

flow diagram and ‘Description’ which data type is text. The uniqueness rule for the ‘Name’

specifies that there can’t be two instances of Store, External or Process in the same Data Flow

Diagram with the same name.

 The graphical metamodeling example

Graphical Metamodeling Example 7

Other modeling elements have additional properties, like ‘Process’ has a property type ‘ID’.

This property is of number data type and its values must be unique among all data flow

diagrams, as specified by the ‘globally’ keyword: it is not possible to have two different

processes with the same ID in any of the diagrams.

If we inspect the metamodel further, we can see that there are two possible connection types

between objects in the modeling language. These connections are called bindings in the

metamodeling language (and in MetaEdit+ respectively). One binding is specified from

‘Process’ to any of the subtypes of ‘Abstract’. The other binding can be drawn from ‘External’

or ‘Store’ to ‘Process’. For the latter binding, the metamodeling language has a concept called

‘Object set’ to describe a collection of objects in a binding. This simplifies drawing the

metamodel as there is no need to specify bindings for each object separately.

Finally, elements in bindings, namely relationships and roles, can also have properties. In this

example, the relationship ‘Data Flow’, which is defined only once although presented twice in

the diagram, has a string property type to enter a label for the flow. The metamodeling

language includes a number of other rules but these are presented later.

1.3 ABOUT THE GOPRR METAMODELING LANGUAGE

The graphical metamodeling language was made to work with MetaEdit+’s GOPRR

datamodel. Therefore, all the modeling concepts used for graphical metamodeling come

directly from MetaEdit+. These metamodeling concepts include:

Language concepts Representation of the concept

Graph specifies one modeling language, such as

State Diagram and Use Case Diagram. Details of

each language are modeled with a separate

metamodel. Integration between languages, with

explosions and decompositions, is specified in a

metamodel for multiple graph types.

Object describes the basic concepts of a modeling

language. Objects are the main elements of your

design. They are elements that you connect

together and often reuse, such as Process,

Message, Button and State.

Relationship defines properties for the objects’

connections, such as Inheritance, Message, Call

and Transition. They are used to form bindings

with objects and roles.

Role specifies the lines and end-points of

relationships, like the Superclass part of

Inheritance relationships and the From part of

State Transition.

Dynamic port specifies a mandatory reference to

another object when the role is connected to the

host object. An example is making a connection to

Dynamic ports are represented as a part

of role symbol. A dot in line indicates if

there is dynamic port, like here ‘InFlow’

The graphical metamodeling example

8 MetaEdit+

an attribute of a class rather than to the class itself,

or connecting to a port of the component – port

been defined in a subgraph of the component.

port:

Property defines the attributes which characterize

any of the previously mentioned language

concepts. Properties can be of different data types

(string, text, number, Boolean, collection etc.) and

link to other modeling language concepts or to

external sources, such as files, programs or

webservices. Examples of properties are State

name, Function identifier, Display type, and Data

type.

Properties are represented as part of

other language concepts. Properties

whose values are objects are shown like

this:

Binding connects a relationship, two or more

roles, and for each role, one or more objects in a

graph. Binding is further specified with

multiplicity.

Object Set describes a collection of objects that

can play the same role in a binding, for instance

that External and Store can both be in the From

role in a Data Flow relationship.

Inheritance allows creating subtypes of other

language concepts, for instance External is a

subtype of Abstract.

Decomposition allows objects to have subgraphs,

for instance a Process can decompose to another

Data Flow Diagram.

Explosion allows objects, relationships, or roles

to be linked to other graphs, for instance the

detailed structure of a Store in a Data Flow

Diagram may be specified in an Entity

Relationship Diagram.

To support generation from graphical metamodels back to MetaEdit+ the GOPRR

metamodeling example includes a generator that creates MXT files. MXT file specifies

metamodels in XML. The generated MXT file can be imported into MetaEdit+ and then

applied as a modeling language. For further details of the MXT format see MetaEdit+

Workbench User’s Guide.

 Working with the metamodeling language

Graphical Metamodeling Example 9

2 Working with the metamodeling
language

In this chapter, we discuss how to access the graphical metamodeling language and how to

work with it, first by playing around with existing (meta)models and then by creating a new

modeling language (metamodel) by using the graphical metamodeling language.

2.1 ACCESSING THE METAMODELING EXAMPLE

To access the metamodeling example, start MetaEdit+, choose the ‘GOPRR’ project from the

list of available projects and login as usual into the demo repository. When MetaEdit+ has

completed the login procedure, the metamodeling example can be accessed via the usual

MetaEdit+ browsing and modeling tools like the Graph Browser and the Diagram Editor.

2.2 PLAYING AROUND WITH THE METAMODELING

LANGUAGE

To start inspecting the metamodeling example, open any of the Graphs listed in the Graph

Browser. A graph names ‘Structured Analysis and Design’ shows the integration among

multiple languages. Double-click it from the list to open this integration metamodel. This

metamodel is also presented in Figure 2-1.

The diagram provides an overview of multiple graph types, showing how four different

modeling languages of ‘Structured Analysis and Design’ are integrated. In the diagram, each

modeling language is defined by including it in a large rectangle that has a dashed line. This

denotes to a graph type in MetaEdit+. The concepts of each language are then illustrated

inside the graph type symbol. If a language element is not attached to be part of any language

(be inside a graph type symbol), an error text is shown in the respective language element.

To access the properties of any model element, double-click it in the diagram or in the

Diagram Editor sidebar. You may also access operations related to each model item by first

choosing the element and then opening its pop-up menu.

Working with the metamodeling language

10 MetaEdit+

Figure 2-1. Metamodel for multiple graph types

Those language elements that have connections to other languages are linked with

relationships. ‘D’ stands for decomposition and ‘E’ for explosion. According to the Structured

Analysis and Design method, a ‘Process’ (Object) in a Data Flow Diagram (Graph) can be

decomposed into another instance of Data Flow Diagram. ‘Process’ can also be exploded into

one or more Structure Charts to specify its internal structure and to State Transition Diagrams

to specify its behavior. In a similar manner, a schema of ‘Store’ identified in a Data Flow

Diagram can be described using an Entity-Relationship (ER) Diagram. Other integration

among the language concepts is illustrated similarly.

Details of each graph type are specified by using a different metamodeling language. To

inspect these details, a separate diagram can be opened. To do so, you can simply double-click

any of the graph types (symbols with dashed borders) while keeping Ctrl pressed down. You

may also choose a graph type in the diagram and select Open Subgraph from the pop-up

menu to open the detailed metamodel. The pop-up selection Manage Subgraphs… allows

you to modify the subgraph links: removing or adding new ones.

To open the metamodel of the Data Flow Diagram, keep Ctrl pressed and double-click the

Data Flow Diagram symbol in the metamodel. This will open a new Diagram Editor on the

graphical metamodel shown in Figure 1-1. To inspect metamodels of other languages repeat

this operation for other Graphs types.

2.3 CREATING A NEW METAMODEL

The next step in working with the graphical metamodeling language is to develop a new

modeling language. In other words, we will use the metamodeling language to create a

metamodel.

We will start here from scratch and make a graphical metamodel for the Use Case Diagram.

We chose the Use Case Diagram because it is familiar to most and it has just a few concepts.

 Working with the metamodeling language

Graphical Metamodeling Example 11

Because of this, we can create a metamodel of the language, generate the MXT file and import

it back to MetaEdit+ to use the created Use Case language, all within half an hour.

2.3.1 Creating a new graph type

We start by first creating a new diagram for the Use Case metamodel. First, click the Create

Graph button in the main window or choose the same operation from a pop-up menu that can

be opened from the middle list of Graph Browser. You will be then asked for the type of

metamodel you would like to create. As we define here only one language choose Metamodel

[GOPRR] and press OK.

Next, enter the name for the graph (‘Use Case Diagram’) and add properties that you like to

give for each diagram, like ‘Model name’ or ‘Documentation’. To do this, open a pop-up

menu in the Properties field and select Add Element….This opens a new dialog for entering

values for each property (see Figure 2-2). You can now enter the details of a property type,

like its mandatory name and optional local name to be used in the modeling tool. You can also

specify a data type for each property by choosing from a list of possible data types. These data

types are described in detail in MetaEdit+ Workbench User’s Guide. For our case of Use Case

Diagram we can choose String data type for ‘Model name’ and Text data type for

‘Documentation’.

The dialog allows also entering default values for the property and choosing uniqueness

constraints. For ‘Model name’ we should choose uniqueness constraint ‘globally’ as it does

not make sense to have multiple use case diagrams with the same name.

Finally, we may enter a description for each metamodel element. The description entered here

is used in the created language and can be accessed during modeling in MetaEdit+ from the

Help menu. The property dialog for the Model name should now look like Figure 2-2. Choose

OK and close the dialog.

Figure 2-2. Dialog for adding a ‘Model name’ property for Use Case Diagram metamodel

Working with the metamodeling language

12 MetaEdit+

Enter property type ‘Documentation’ in the similar manner to ‘Model name’ property and then

close the dialog of Use Case diagram. This opens an empty Diagram Editor.

2.3.2 Adding a new object to the metamodel

Next, we need to specify the objects that we will use in our modeling language. In the Use

Case Diagram they are ‘Use Case’, ’System’ and ’Actor’. Let’s start with the Actor concept.

Choose Object [GOPRR] button from the toolbar or from Types menu and then click in the

diagram. This opens a dialog to specify details of the object.

First we must give a name for the object: Enter ‘Actor’. Then we can specify the property

types each actor may have. The property types such as ‘Actor name’ can be specified in a

similar way as we did already for the property types of graph type Use Case Diagram.

While defining the Actor concept we can also reuse already defined property types. For

example, ‘Documentation’ text property type was already defined for Use Case Diagram. We

can use it as a property type for the Actor too. To reuse it choose Add Existing… instead of

previously used Add Element… menu item. This opens a dialog showing all available

property types. Double-click the ‘Documentation’ item to add it to the list of selected elements

to be added. Then press OK button to add the selected property type into the properties of

‘Actor’. If you create a new property type with the same name as another property type, e.g.

‘Documentation’, you should give a namespace for the metamodel. This can be set in the

properties of the whole metamodel. Choose Graph| Properties… to enter namespace.

To finalize the definition of the ‘Actor’ we can enter a description to the modeling concept

and choose the occurrence constraint. The default value ‘N’ means that multiple actors may

exist in one use case diagram. Choosing the value to be ‘0’ will signify that the object is

abstract, similar to the “Abstract” Object in our Data Flow Diagram example in Figure 1-1.

After you have defined the two properties, the dialog for specifying ‘Actor’ should look like

Figure 2-3. Choose OK and close the dialog. This will add the created object to the diagram.

Figure 2-3. The specification of ‘Actor’ object

Next, we can continue by entering other modeling objects for the Use Case Diagram. Add the

‘System’ and ‘Use case’ objects in a similar manner. For ‘System’ we can define occurrence

to be ‘1’, meaning that each use case diagram can show just one system. If you like to specify

multiple systems within the same use case diagram, change this value to ‘N’.

 Working with the metamodeling language

Graphical Metamodeling Example 13

To allow linking external files to use cases in the model remember to choose External Element

as a data type for ‘Documentation file’ property type. After adding these two additional object

types, the use case metamodel should look like Figure 2-4. If you want for the object types a

specific order of appearance in the toolbar of modeling editors you may set the order in

properties of the metamodel. Choose Graph | Properties… and add these existing elements to

the Object order list. If no order is given they will be listed in alphabetical order.

Figure 2-4. Modeling objects added to the metamodel of Use Case Diagram

2.3.3 Creating bindings between objects

Next, we need to define connections between the object types. We do this by creating bindings

among the objects. To define an association relationship between use case objects and actor

objects, we define a binding between them. Choose Binding [GOPRR] button from the

toolbar (orange diamond) and connect the two objects by clicking them. Alternatively, you can

start by choosing Connect… from the pop-up menu of an object and then click the other

object or use any of the other connection creation possibilities as described in Diagram Editor

Chapter of MetaEdit+ User’s Guide.

Creating a binding relationship will open a dialog to specify details of the binding. Binding is

the same concept as in the GOPRR datamodel of MetaEdit+. It relates objects with each other

by defining their relationships and the role each object plays in that relationship. In the

binding tab of the dialog we can specify the relationship type, its name and properties. This is

done similarly to that of specifying objects. Choose Attach New Object… and enter at least a

name for the relationship, like ‘Association’. You need to specify at least the relationship

name as it is a mandatory property. Optionally, you may also provide it with more properties,

like for example ‘Association name’.

For the binding we need to specify a minimum of two role types. We specify these in the next

tabs of the binding dialog, as shown in Figure 2-5. In case of the Use Case Diagram, the

‘Association role’ can be specified similarly to ‘Association’ relationship. Click the tab with

text ‘First role’ and specify ‘Association role’ that can have further properties like ‘Role

name’. Note that the name of the role is a mandatory property. For role types we need to

specify also their cardinality constraints. The default values work here well as there normally

can be only one use case and actor in the same association. Later we show other cardinality

values for other bindings.

Working with the metamodeling language

14 MetaEdit+

Figure 2-5. Creating binding between ‘Actor’ and ‘Use case’

While specifying the second role type we can reuse the already once defined ‘Association

role’ by selecting Attach Existing Object… from the pop-up menu and choosing the already

defined ‘Association role’ from the list of available role types. Default values for cardinalities

work also well here. If there would be need for having mandatory reference to another object

within the host object (Actor here) those could be added to Dynamic Ports field by choosing

Add Existing….

Finally, for the second role we can choose the direction in which the ‘Actor’ and ‘Use case’

can be connected. By default, the bindings are created as directed ones but if we choose the

option Can be drawn in both directions then connections can be created in both ways: From

actors to use cases and from use cases to actors. Choose this option and press OK. This creates

a binding into the diagram.

In a similar manner you can also define a generalization relationship and a dependency

relationship for the use cases. As described in Figure 2-6 the binding for ‘Generalization’ has

‘Superclass’ and ‘Subclass’ role types. The cardinality constraint for ‘Subclass‘ role is ‘1,N’

allowing to specify multiple subclasses with the same generalization relationship.

In Use Case Diagram, a dependency relationship allows specifying uses and extends

connections between the use cases. To define this into our metamodel we add a ‘Stereotype’

property for the ‘Dependency’ relationship. This property type has a predefined list of values,

namely ‘use’ and ‘extends’. If we choose an overridable list as a data type for the ‘Stereotype’

property then the use case modeler can choose among the predefined values but can also enter

own values. The first value entered in the list of predefined values is used as a default value.

First value can be also an empty line. It allows defining dependency relationships into use case

models which don’t have any stereotype value.

To finalize our bindings for Use Case Diagram, we can also add ‘Note’ object to the language

and add it to the association binding. This allows relating additional note elements in use case

diagrams to specific associations. To add the created ‘Note’ object to the existing binding,

select the ‘Association’ relationship. Then choose Add a New Role… from its popup menu

and click the ‘Note’ object to create the connection. For the new role we can create a role

called ‘Note part’. This role definition should have ‘0’ value as a minimum cardinality. This

makes adding notes to associations optional.

 Working with the metamodeling language

Graphical Metamodeling Example 15

We can repeat the same metamodeling operations and add optional role also for other bindings

if we need them in use case modeling. The metamodel should now look similar to Figure 2-6.

Figure 2-6. The graphical metamodel for Use Case Diagram

2.3.4 Adding objects as properties

To make the metamodel complete, we need to define the Attributes and Operations that a Use

Case may have. This is especially needed if we want to specify a Use Case as a Class. For this

purpose we can create two new Objects called ‘Attribute’ and ‘Operation’ and then connect

them to the ‘Use case’ object with the property relationship. You can choose this connection

from the ‘Property’ button of Diagram Editor toolbar (a blue diamond with a short line).

For the property connection we can specify an optional local name and constraints. As a use

case may have multiple attributes and operations we must mark them as Collections in the

NonProperty of tab during relationship creation. This collection value is shown in the diagram

with asterisk (*).

You can add additional properties for the ‘Attribute’ and ‘Operation’ objects if you want.

Remember to mark these objects as abstract (choose Occurrence value ‘0’) so they are not

used as the main modeling concepts but are available only via the ‘Use Case’. You can also

make more complex modeling concepts by adding further objects as properties, like in case of

Parameters for Operations.

Figure 2-7 illustrates the final metamodel for the Use Case Diagram. You will find it is similar

to other metamodels available in the GOPRR project.

Working with the metamodeling language

16 MetaEdit+

Figure 2-7. The complete metamodel for Use Case Diagram

2.3.5 Integrating languages and integrating individual
graphs

Frequently, we need to integrate individual graphs with one another, or integrate several

languages together. A graphical metamodeling language allows for the creation of such

explosion and decomposition links supported by GOPPRR. Figure 2-1 illustrates an example

of this type of integration between four different languages.

To finalize our language design for Use Case Diagrams we specify a language structure in

which each System object can be described in one subgraph. This is specified as a

decomposition. While this subgraph, the target of the decomposition, could be in another

modeling language — as was the case in Figure 2-1 — here we will create the link to the

existing Use Case Diagram as follows:

First, click the Create Graph button in the main window, select Metamodel for multiple

graphs [GOPRR], and press OK. Next, enter a name for the graph (e.g. ‘MyLanguage’) and

press OK. This opens an empty Diagram Editor providing a slightly different language from

 Working with the metamodeling language

Graphical Metamodeling Example 17

the one used to specify the metamodel of Use Case Diagrams. Here you can add all the

languages to be integrated by selecting Graph [GOPRR] from the toolbar and then clicking in

the diagram. This adds a Graph symbol to the drawing area with instructions on how to

integrate it with the existing language, as shown below.

Figure 2-8. Graph added to the metamodel.

Next, this can be linked to the existing metamodel — Use Case Diagram in our case — by

choosing Open Subgraph from the pop-up menu and then choosing Use Case Diagram from

the list of available individual metamodels. Alternatively, you could start creating a new

metamodel. After creating the link to a subgraph, the name for the metamodel will become

visible for the Graph symbol. The pop-up selection also allows for the modification of the

subgraph link: either by removing or adding links to other metamodels.

To specify a decomposition from System to Use Case Diagram we need to add the System

concept to the diagram and place it inside the dotted graph symbol (see Figure 2-9). This

specifies that the System concept is part of the Use Case Diagram. To add the existing System

concept, simply copy and paste the object from the subgraph into the top graph.

Another way to add the existing System would be to click the Object button in the type toolbar

in the top graph, and then Shift-click in the desired place in the diagram. This will prompt you

in a Component Selection Tool to select an existing Object [GOPRR]. The dialog list will

initially show the objects that are already in this graph; press the Graphs button to show all

graphs, then choose the appropriate graph and double-click the right object type within it. This

allows you to reuse several objects from various places at the same time. The path followed to

get to the right object type will be remembered, so next time it can be selected from the

Selection History pull-down list in that dialog.

If a language element (e.g. System in Figure 2-9) is placed so it is not inside any blue dotted

Graph symbol, an error text is shown in the element; drag it so it is wholly inside its parent

Graph symbol.

Figure 2-9. System is decomposed into another use case diagram.

To finalize the language structure, create a decomposition relationship from System to Use

Case Diagram: choose the Decomposition [GOPRR] button from the toolbar and then connect

System to Use Case Diagram as shown in the Figure 2-9. (By default the relationship will be

drawn between the centers of the objects to minimize its length, so between the two closest

edges of the objects; you can select the outer end and drag it to change the positioning.) This

structure now allows for the creation and maintenance of a hierarchy of use case diagrams.

Generating language definition into MetaEdit+

18 MetaEdit+

3 Generating language definition into
MetaEdit+

Now that we have defined our language, its concepts, properties, connections and rules, next

we will generate our metamodel into MXT file format, so that we can import it into MetaEdit+

Workbench, where we can add symbols, instantiate it etc.

3.1 GENERATING MXT

MetaEdit+ supports XML-based importing and exporting of metamodels. The XML format

for metamodels is called MXT (MetaEdit+ XML Types file). This metamodeling example

uses the same format for producing XML files from the graphical metamodels.

To generate a MXT file from the graphical metamodel of Use Case Diagram we run the

generator. In the Diagram Editor, generators can be executed by selecting Graph |

Generate… and then choosing the required generator from the list that opens. A faster way is

to press the generator button that is available in the toolbar of Diagram Editor.

For generating the metamodel into MXT, we provide three alternative generators:

 ‘Export graph type to MXT file’ (also the ‘MXT’ button in the toolbar of the Diagram

Editor) produces the MXT file into the output directory. By default it is called

‘reports’ and its location is a subdirectory of the MetaEdit+ directory.

 ‘Export and Open MXT’ produces the MXT file and opens it in your default browser.

 ‘Export and Build MXT’ (also ‘Build’ button in the toolbar of Diagram Editor)

produces the metamodel into MXT file and imports it as a metamodel into MetaEdit+.

Please note that this requires that you have rights to import XML files into MetaEdit+.

Read MetaEdit+ User’s Guide for importing files.

The same generators are also available for the metamodeling language describing language

integration. If you execute the generator from a metamodel that describes multiple languages

then all the languages will be included into the same MXT file.

Next, you can run a generator to produce XML for the Use Case Diagram that we specified

earlier. If you run the Build generator, no further actions are needed to import it to MetaEdit+,

but if you executed other generators you will need to import them manually. To do this, press

the Import button in the MetaEdit+ main window and choose the MXT file to be imported.

The MetaEdit+ User’s Guide describes the procedures for importing files in more detail.

3.2 WORKING AND EXTENDING THE IMPORTED METAMODEL

After importing the metamodel, you can access it by using the metamodeling tools of

MetaEdit+ Workbench, as described in the MetaEdit+ Workbench User’s Guide. We can

therefore next complete our use case implementation and add notation to it by using the

 Generating language definition into MetaEdit+

Graphical Metamodeling Example 19

Symbol Editor, make generators for documentation and checking reports with the Generator

Editor, modify dialogs in the Dialog Editor or customize toolbars used in Editors.

If we need to change the basic metamodel after importing it, we can either modify the

metamodel directly using the metamodeling tools of MetaEdit+ or use the graphical

metamodeling language. For the latter case we need to regenerate the MXT file and import it

back into MetaEdit+. Note that this will leave any symbols, generators and custom dialogs

intact, but overwrite other manual changes we have made to the metamodel.

3.3 EXTENDING THE MXT GENERATORS

The generators that we used to produce the MXT files are made in the same way as other

generators in MetaEdit+. You are free to modify them or create new generators to export the

metamodels in other formats. To access these generators, open the Generator Editor by

choosing Edit Generators from the Graph menu. Note that there are actually two main

generators: one is for generating MXT for one graph and the other is for generating MXT

from multiple graph types. To access these different generators you will need to open the

generator for both metamodeling languages. For more information on defining generators,

please see the MetaEdit+ Workbench User’s Guide.

Conclusion

20 MetaEdit+

4 Conclusion

In this example we have demonstrated graphical metamodeling. With the metamodeling

language you can design the basic structure for a domain-specific language as well as its

integration with other languages.

The created graphical metamodel can be generated into MetaEdit+ as a modeling language.

MetaEdit+ then offers modeling tool support for it with various editors, browsers, multi-user

support etc. The metamodel import is based on using the MXT format (MetaEdit+ XML

Types). After importing the metamodel the language can be further extended by adding

notation, generators and constraints or modifying dialogs and toolbars related to the language

use. To complete the language definition you need MetaEdit+ Workbench.

The metamodeling language is tightly related to the GOPPRR metamodel used in MetaEdit+.

However, it is implemented as any other modeling language in MetaEdit+. It is completely

open and thus it can be freely extended to cover additional requirements of graphical

metamodeling, such as to cover ports or other metamodeling needs you find relevant. You are

welcome to extend the metamodeling language as well as the generators further, or even to

make your own graphical metamodeling language that outputs to the MXT format.

